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Abstract-A simple perturbation approach is developed to obtain the energy-band structure of 
solids. The unperturbed Hamiltonian consists of the kinetic part and of a uniform potential; the per- 
turbing operator is the crystal potential plus a term which originates from the requirement that 
valence and conduction states be orthogonal to the inner states. This amounts to an approximation 
to the O.P.W. method. 

Reasons are given for the validity of such a simple scheme and applications are made to the case 
of the diamond lattice and of the zincblende lattice. 

It is shown how features of the energy-band structure depend on the symmetry of the lattice, on 
the lattice parameter and on the “core states” of the atomic components. Numerical results obtained 
for diamond, silicon and BN are in fair agreement with recent calculations. 

An energy-band structure consistent with experimental information is obtained for Ge and GaAs 
by fixing the values of a few parameters. 

1. INTRODUCTION 

IN THE past few years a number of calculations of 
the energy-band structure of solids have been pub- 
lished(l) and in the case of many monatomic solids 
the energies of a number of valence and conduc- 
tions states have been computed with a remarkable 
amount of labor. 

An examination of the results obtained on 
different elements having the same lattice sym- 
metry and a comparison with results of calcula- 
tions on fictitious crystals(2J*4) seem to indicate 
that the relative positions of the energy levels at 
symmetry points of the Brillouin zone and the 
general energy-band structure are quite inde- 
pendent of the lattice potential. The important 
regularities characteristic of the monovalent 

* Based on work performed under the auspices of the 
U.S. Atomic Energy Commission. 

t Supported in part by the Air Force Research and 
Development Command, Air Force Contract 
AF 49-638-420. 

metals in the body centered cubic structure have 
been discussed by COHEN and HEINEc5) on the 
basis of a simplified model derived from the 
Wigner-Seitz method. 

It is recognized that similar regularities exist 
for every crystal symmetry. We want to point out 
that they can be most easily explained in the 
framework of the Orthogonalized Plane Wave 
(O.P.W.) method. The reason why this can be 
done is the same one which is responsible for the 
good convergence of the O.P.W. method itself, 
namely the approximate cancellation of the 
Fourier coefficients of the crystal potential against 
the terms arising from the procedure of ortho- 
gonalization of the trial wave functions to the core 
states. As recognized by PHILLIPS and KLEINMAN@), 
the effect of orthogonalization is formally equiva- 
lent to the addition of a repulsive term in an 
effective Hamiltonian acting on the non-ortho- 
gonalized trial wave functions. Though this extra 
term does not have in general the simple form of a 
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potential function of coordinates V,(r), PHILLIPS 
and KLEINMAN found that an approximate 

“effective potential” V,(r) can be simply con- 
structed from the O.P.W. method. ANTONCIK(~) 
makes use of the same idea, but approximates the 
repulsive potential by a formula derived from the 
statistical theory of the atom. The calculations 
performed using these simplifications give good 
results in the case of diamond,@) where only s 
core states are present, but are not so accurate in 
the case of silicon.(s) The idea of a repulsive 
potential has been mainly successful in the for- 
mulation of an interpolation scheme,(ls) in which 
the high Fourier coefficients of V,(r) are assumed 
to cancel exactly the high Fourier components of 
the crystal potential and the low Fourier com- 
ponents are chosen to fit a few calculated or 
experimental values. 

The justification of these procedures first 
suggested by COHEN will be used here to show 
that the combined effect of the crystal potential 
and the repulsive term can be treated as a pertur- 
bation on the eigenstates of a uniform potential. 
In this scheme the first and second order correc- 
tions to the energy of a level can be visualized as 
arising from the core states of the atoms com- 
posing the crystal and from the first few Fourier 
coefficients of the crystal potential and thus a 
criterion is given for predicting the positions of 
energy levels belonging to different irreducible 
representations of the group of the wave vector k. 

This simple approach will be shown to give 
qualitative information on the energy-band 
structure of crystals with diamond and zincblende 
type structure. A quantitative application of the 
method to the case of diamond, silicon and boron 
nitride gives results in good agreement with pre- 

vious calculations. A simplified interpolation 
scheme has been set up in this framework, which 
is shown to reproduce the band structure obtained 
by PHILLIPS for Ge(ls) and is further applied to 

the case of gallium arsenide. 

2. PERTURBATION APPROACH TO THE O.P.W. 
METHOD 

Let H = Ha+ V(r) be the one-electron Hamil- 
tonian of the crystal and let #c be the wave func- 
tions of the core states, which satisfy the equations 

HILe = E&c, where EC is the atomic eigenvalue 
for the core state c. The unperturbed Hamiltonian 

E 

HO is the sum of the kinetic energy and the 
Fourier coefficient V(0) of the potential, so that 

the space average of V(r) can be taken to be zero. 
The eigenfunction @(k,r) of a valence or con- 

duction state associated with the irreducible 
representation cc of the group of k is determined 

in the O.P.W. method by putting 

and expanding + in the appropriate set of sym- 
metrized linear combinations of plane waves. The 
Schrodinger equation can be transformed into: 

(H+R)$ = E$ 

where the operator R is defined by: 

R+ = C(E- EC) ($&)&. 
c 

(1) 

(1’) 

It is clear that the function #J is not uniquely 
defined. In fact, adding to + any arbitrary com- 
bination of core wave-functions we obtain a wave 
function 4’ which satisfies equations (1) and (1’) 
and gives the same results for p(k,r) and E. It is 
possible in principle to remove this indeterminacy 
from + by substituting R in equation (1) with an 
operator R’ defined by: 

R’$ = ~(J&> A+)& (1”) 
e 

where A is any chosen operator. Then the solutions 

of the equation: 

(H+R’)$ = E# (2) 

also satisfy equation (1) because by multiplying 
equation (2) on the left by #c and integrating we 
obtain, for every value of the index c: 

($J$) = (E-J%) (VU). (3) 

However, now the function 4 belonging to a given 
eigenvalue E is uniquely defined because of 

equation (3). 
Several choices of A are possible: (a) for A = 0, 

+ reduces to the eigenfunction #; (b) for A = E- H 
equation (3) becomes an identity and gives back 
the equations (1) and (1’); (c) for A = -V, 
equation (1) becomes: 



66 F. BASSAHI and V. CELLI 

and this shows that the arthogonalization has the 
effect of subtracting from V$ that part which can 
be expanded over the core states, that is a large 
fraction of the potential V near the nuclei is can- 
celled. The most convenient choice depends on 
the method used to solve equation (2). 

In the present paper V+R’ will be treated as a 
perturbation and R’ will be defined by choosing 
the operator A in such a wsy that 4e(k,r) be as 
close as possible to a combination of a few plane 
waves of the appropriate symmetry. Rules have 
been given in detail by HERMAN~X~) and others to 
construct such combinations. In short the “empty 
lattice” analysis is first performed, grouping into a 
set all the plane waves of the form expfi(k + &Jr] 
belonging to the same eigenvalue of Ha, 

wo = V(O)+ 2 ,k*hp. 

As usual, k indicates the reduced wave vector and 
hl a reciprocal lattice vector. Out of every set one 
then forms linear combinations Sp(k,r) which 
transform according to a given irreducibie repre- 
sentation E of the group of the k vector. Matrix ele- 
ments of V+R’ between &a and SfB will vanish 
for cx # /?, so that the correct zero order linear 
combinations are directly obtained by symmetry 
arguments, unless the same irreducible repre- 
sentation appears more than once in a given set or 
it appears in two sets which lie close in energy in 
the empty lattice. 

To obtain general formulae let us consider the 
case of two quasi-degenerate or degenerate states 
Sla(k,r) and S&k,r) having energies Wra and 
Wae with Wra < Was. The perturbed wave 
functions of these states are expanded as follows: 

where & and Sa appear only in the zero-order 
combination &rJ = c~&+csSs which is nor- 
malized to unity. For the lower energy level we 
set El = W”O+ WI’ -+ ;GVl”. Substituting into (2) 
and considering zero and first-order terms to- 
gether we obtain: 

~I(S~,(H+R')~)~~Z(SI,(V-~R')S~) 

= (Hwt- Il;i')Cl 

~I(~z,(~+R')Sl)+~z(~z,(~~R')S2) 
(5) 

= (Wi"+ TV~')C2 

Solving equation (5) one obtains the first-order 
correction to the energy and the zero-order 
correct wave function Sis. For the coeflicients CX~ 
we obtain: 

(&,( V+ R’)&O) 

The energy to second order is then formally given 
by the same expression as for a non-degenerate 
level; but now St0 needs not to be an eigen- 
function of the unperturbed Hamiltonian. 

I-r, (SI*,( V; R’)SS) fSj,(V+ R’)S+‘) 
;-rl J --y&o _ $yjrJ .--- 

(6) 

The question arises at this point as to which is 
the most convenient form of the operator A?’ to be 
inserted into equations (5) and (6). In the Appendix 
we show that the requirement that + be as close 
as possible to 40 is consistent with considering 
R’+ as the sum of a first order term. 

Rr’$ = Z( WP - EC) (~~,~~~~ 
I, 

and a second order correction 

The first arder term is the one used in obtaining 
II\ and $0 from equation (5). When both terms 
are substituted into equation (6) the second order 
correction tn the energy becomes: 

The perturbation formulae so obtained reduce to 
the ones previously derived in the appendix of 
Ref. (2) in the case of well separated unperturbed 
eigenvalues. 

The problem of checking the convergence of the 
method cannot be treated without considering 
higher order terms in the perturbation expansion, 
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the empty lattice. The first order perturbation in- 
creases the energy of I?&?) and f% more than that 
of Fi5 and FzSs for light elemer~ts because the re- 
pufsion from s-states is larger than that from p- 
states and r&2) is further raised at second order 
by the positive interaction with Ij( 1). The second 
order correction lowers T’est with respect to II’15 
because of the interaction with the set (ZOO) in 
the former case. The sequence of the energy levels 
at the I’ point in the diamond structure is then: 

This is verified in caleuXations on C, Si and 
psetrdocrysrals. However, HERMM’S c~cn~a~~ons 
for Getla’ give Pa, fewer than lY15; we think that 
this can be attributed to the presence of d-core 
states which raise F1s with respect to Ps, which is 
an s-like state. 

in lattice constant and consequently an increase 
in the energy gap as e~~r~rnen~~y observed.Q7 

Quantitative results can atso he obtained from 
formulae (51, (6), and (7) with a small amaunt of 
labor. We have carried out the calculations for 
silicon using the same core states and crystal 
potential ne KLEINMAN and PHILtrPs@)* rather 
than the expressions given by WOCHXWPF(~~), 
which one af us used in a previous O.P.I;c’. calcu- 
lation.cn+~ In Table I we give our numerical results 
and for comparison the results obtained by 
KLEXNMAN md PNILLIPS, who used their “egective 
potential method” but introduced corrections to 
make it equivahmr to a complete 0,P.W. method. 
The di&rence in the results due to our use of the 
perturbation approach is seen to be not signifi- 
cantly large with a maximum difference of about 
0.1 Ry for the level L3,. The agreement can still 

.._... _..-. ,. ,,, ,,~~“_:. .-- - ._ .-_ ,^ . 
“7 - 

A4t the other symmetry points of the Brillouin 
zone also, the sequence of the energy levels at each 
point can be inferred in the same way and is in 
agreement with the calculations performed and 
with the experimental evidence available. How- 
ever, very httfe can be said in this quafitative way 
about the refative position of mergy fevels IX 
d&rent s~rnrne~~ points, 

It is to be expected from the presert approach 
that an increase in the lattice constant will con- 
tract the energy scale of the empty lattice eigen- 
values and consequently will make the separation 
between final energy levels smaller. This is in 
agreement with the experimentaX observation that 
the energy gap and the vaXence band width de- 
crease going from diamond to silicon to ger- 
manium. On this basis one can also explain 
qualitatively the effect of pressure on the energy 
gap; an increase in pressure wilt cause a decrease 

be improved by including more plane ‘it’avcs in 
the perturbation expansion since this will lnn~ 
our energic~ for the states Lx and L3 by $1 fens 
hundredths of a Rydberg and have a much smaller 
effect on the other states. However, the main 
interest of this calculation is that of showing that 
pert~rb~~t~o~~ corrections of order higher than 
second are smah enough to have a neg~~~~b~~ ef%cr 
on the g~~raI energy-band structure. The quanti- 
tative application of this procedure to the case of 
diamond has also been made but in this case WC 
felt justified to use for the operator R' in equations 
(5) and (6) the effective repulsive potential evalu- 
ated by KLEINMAN and PHILLIPS(*). 7’hc results 

for s-like states are quite good but, as expected, 
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the p-like states Pls, rsss, X4, LJ and La* do not are reviewed by CALLAWAY and by WELKER and 
show the same good convergence because of the Weiss. An O.P.W. calculation has been done 
absence of the repulsive terms in this case. How- by KOBAYASI on SiC.(s4) 
ever, the relative position of these states is obtained The application to this structure of the pertur- 
correctly and, by adding a constant value (- 0.3 Ry) bation procedure described in Section (2) has been 
to compensate for the neglect of plane waves of carried out in detail. The Crystal Symmetry 
higher energy, we can still reproduce the correct Combinations of Plane Waves (C.S.C.P.W.) are 
energy-band structure. In Table 2 our results are chosen to be the same as in the diamond structure 

Table 2. Energy lev& at points l?, X, L in diamond (in Ry) 
_._ _.-._ - 

I 
l-1 / L2, XI LI X4 L3 

! 
r25, / r15 Xl(Z) LB L&9 

-I~-_-______--___ 

Present results -2.44 j-l.98 l-1*66 -1.48 -1.30 -1.02 -0.79 -0.36 -0.23 -0.04 -0.03 
-- 

HERMAN's results -_241~--In?i-_161 -1.55 -1.29 -1.14 ~~~~ -0.14 

--._..- _- _-.._ 

given together with the results reported by 
KLEINMAN and PHII.LIPS(*), which are extra- 
polations of HERMAN’S previous results.(r5) The 
general energy band structure is the same but the 
states Lv, L3, Ll(2) are about 0.1 Ry higher in our 
calculations. We feel that this is not an essential 
disagreement and can be sensibly reduced just by 
including a larger’ number of plane waves in the 
perturbation approach. 

We have not performed numerical calculations 
of this kind on Ge but we might expect that the 
effect of orthogonalizing to the d-core states will 
be to raise the energies of the states I’ls and Ls 
with respect to that of the predominantly s-like 
states I’s and 4(2). 

4. THE ZINCBLENDE STRUCTURE: NUMERICAL 
RESULTS FOR BN 

This structure consists of two f.c.c. lattices 
made of different atoms, one of the lattices being 
obtained from the other by a translation a (t, a, a), 
a being the lattice constant. The symmetry 
analysis of the Brillouin zone has been given by 
PARMENTERug) and we will use his notations. 
HERMAN and CALLA~AY (21) have made qualita- 
tive considerations on the energy hands by con- 
sidering the crystal potentiaf as a perturbation on 
the diamond lattice potential; along the same line 
KLEINMAN and PHILLIPS have given results 
for BN; other calculations and experimental data 

at the points l? and L. At these points the number 
of irreducible representations for the zincblende 
structure is half as much as for diamond, because 
the group of the k vector for the diamond structure 
is the direct product of that of the zincblende 
structure times the group composed by identity 
and inversion. The situation is different at the 
point X, where the two-dimensional irreducible 
representation Xr in diamond splits into Xl and 
Xs (one dimensional) in zincblende, and similarly 
Xs splits into Xs and X4. The other irreducible 
representations of diamond Xs and X4 coalesce 
into X5. In order to get real matrix elements we 
found it convenient to use for Xl and Xs new 
C.S.C.P.W.‘s obtained by taking the origin at a 
lattice point. The irreducible representations 
which appear in the lowest empty-lattice levels are 
given in Table 3. The C.S.C.P.W.‘s can be taken 
from previous papers on the diamond structure(r2) 
except those belonging to the irreducible repre- 
sentations Xr and Xs which are given in Table 4. 
A connection between the matrix elements of the 
zincblende and the diamond lattice can be estab- 
lished by dividing the crystal potential and the re- 
pulsive terms in two parts, which are symmetric 
and antisymmetric about the middle point of the 
two nearest atoms. The method of Section (2) 
enables one to derive explicit expressions for the 
energy values of all irreducible representations 
listed in Table 3. We do not think it necessary 
to give tables for them, but rather we will discuss 
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Table 3. Symmetry analysis of the “Empty Lattice” in the xincblende structure 

I 
Empty lattice eigenvalues 

/ 

Number of plane waves fi’ &? ~ Irreducible representations 

in units --xx-- 

I 2m a’ 

1 (0, 0, 0)” rl(s) 
Point I 8 / / (1, 1, 1)” 2r1,21’15 (p,& 
k=O 6 : (2, 0, 0)” l-15, PI, I’lZ(d) 

12 / (2, 2, OY r1, 2l?lj, ITa;,, 1-12 

Point X 

k = 2”(1,0,0) 
n 

2 I (1, 0, O)? X1($, P, 4, Xa ($7 P, (I) 
4 Xl, .&, Jc5 (P> 4 
s Xl, X8,2&, -5 (Pa J), XdP, d) 
8 2x1, 2x3, 2X5 

Point L 

2x 

k = -(l/2, l/2, l/2) 

n 

2 ~ (l/2, l/2, l/2)’ 2L1 (f, P, 4 
6 1 (3/2, l/2, l/2)? ~ 2L1, 2Ls (p, CE) 

6 (l/2, 3/2, 3/2)’ 2L1,2Ls 

6 (S/2,1/2, l/2)? 2L1,21,3 
2 (3/2, 3/2, 3/2)’ 2I,3 

S.B.-The core states which belong to a given irreducible representation are indicated in parentheses every 

time the irreducible representation appears first. 

the qualitative features as done for the diamond 
structure. 

At the point F the lowest eigenvalue will be l?l. 
The first order correction to the energy of this 
state contains only the symmetric part of the 
potential and is very close to that for the diamond 
structure. The second order correction is expected 
to be larger than in the diamond structure be- 
cause of terms from the antisymmetric part of the 
potential. The second eigenvalue of I71 is degener- 
ate in zero order and as a result of the splitting in 
first order due to the antisymmetric perturbation 
this level will be lowered with respect to the 

corresponding I’a, of the diamond structure. The 
next irreducible representation I’15 is also de- 
generate in zero order and the effect of the anti- 
symmetric potential to first order will be to lower 
I’~s( 1) with respect to I’s5, of the diamond structure 
and to raise rls(2) with respect to I’rs of the 
diamond structure. The expected order of the 
energy levels will then be: 

rl G r15(1) < r1(2) _ k(2). 

The relative positions of rl(2) and rls(2) depend 
on the core states which are present; if there are 

Table 4. Crystal symmetry combinations of plane waves in the zincblende structure with the origin at a 
lattice point for the wave vector k = 2r/a (100) (point X) 

Set of plane waves C.S.C.P.W. for Xl and Xs 

{loo? ~ f : \/2 [(loo) t(ioo)] 
<011> 112 [(oll)+(olT)+(oil)+(oli)] 
<l20> l/d8 ~(120)+(1Zo)+(1o2)+(1oZ)~(T2o)+(iZo)i(io2)+(ioZ)] 
<211> l/d8 P11)+(2iT)+(Z11)+(ZTi)+(ZT1)+(Zlf)+(211)~(2li)] 

l/2/8 ~(211)+(2Ii)-_(211)-_(ZTi)~(ZT1)+(Z1T)~(2il)+(21T)] 

N.B.-In any of the combinations of plane waves the first choice of signs gives a combination belonging to XI 1 
and the second choice the combination belonging to X3. 
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other core states besides (1s) we may expect I’l(2) 
to lie lower than P&2). 

A similar analysis at the point L, also with the 
help of the Table 3, gives the sequence: 

&(l) < h(2) < L3(l) < &(3) = &(2). 

If p or d core states are present, we expect Lr(3) 
to be lower than Ls(2). 

At the point X the levels Xl and Xs correspond 
to the twice degenerate level Xl of diamond. They 
differ by a consistent change in sign of the anti- 
symmetric terms in all matrix elements. The 
levels Xs correspond to the levels X4 of the 
diamond structure. The sequence of levels that 
we expect will be: 

Xl(l) < X3(l) < x3(1) < x1(2) < x3(2) < -&(2). 

An energy gap exists and the material is an in- 
sulator when l?rs(l), Ls(1) and X5(1) are all lower 
than the levels appearing next in the sequences. 
This appears always to be the case for the com- 
pounds which are known to crystallize in this 
structure. 

We have made numerical computations for BN 
using the parameters reported by KLEI.NMAN and 
PHILLIPS and their repulsive potential approxi- 
mation to the operator ip’, as we have done for 
diamond, because only the core state 1s is present. 
As in the case of diamond the convergence of 
p-like states is rather poor and the same correction 
-0-3 Ry has been added to the states I’ls, Xs, and 
La. The results so obtained from our usual per- 
turbation on the “empty lattice” are shown in 
Table 5 together with the results of KLEINMAN 
and PHILLIPS obtained from a perturbation on 
the diamond lattice. While the general energy- 
band structure in both approximations displays 
the same physical features, increase in the energy 
gap with respect to diamond and splitting of the 

valence band into two separated bands, the quanti- 
tative results do not show the same good agree- 
ment as in the cases of Si and diamond. A com- 
plete O.P.W. calculation on BN is in progress. 

It is a rather difficult task to predict the relative 
positions of levels of the same band at different 
points of the Brillouin zone because the difference 
is very small and is rather sensitive to the par- 
ticular elements which form the structure. In the 
case of BN the minimum of the lowest conduction 
band was found at the point X (see Table S), but 
for the elements with p and d core states as GaAs, 
InSb, CdS . . . we may expect the minimum to be 
at the center of the zone and to be the state I’r(2) 
since the effect of p and d core states is to increase 
the energies of Xl, Xs, Lr and PI5 with respect to 
that of I’r(2) as can be seen from Table 3 and 
more clearly from the matrix elements of the per- 
turbation. These considerations are in agreement 
with the results obtained by SHAKIN and 
BIRMAN(~~) in ZnS with the Wigner-Seitz method. 

5. ENERGY BAND STRUCTURB OF Ge AND 
GaAs 

It seems of interest to use the present method 
as an inte~olation scheme for the case of Ge and 
GaAs, where the large number of electrons would 
make the calculation of the parameters quite 
laborious. These two crystals are very similar 
having the same kind of core states and lattice 
constants nearly equal, a = 5.647 A in Ge 
and a = 5.635 A in GaAs. For both of them we 
approximate the repulsive operator R’ of Section 
(2) with an effective potential depending on the 
core states. The quantity V+R’ which appears as 
a perturbation on the “empty lattice” is called the 
total potential and we consider its Fourier co- 
efficients as disposable parameters as PHILLIPS 
has done with the O.P.W. method. We assume 

Table 5. Energy values at the symmetry points I’, X and L in BN (in Ry) 
--- 

Ll Xl h(2) x5 x3 L3 r15 x1(2) r15(2) x3(2) r](2) h(3) 
---_____ 

Present 
KL81&;;.Z / I‘ 2.52 -2.24 -2.17 -1.45 -1.34 -1.33 -1.06 -0.95 -0.45 -1Z.32 -0.17 -0.14 -0.13 

-~- -___ --,- 
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that the effect of the perturbation on the “empty 
lattice” can be represented by giving appropriate 

assume a behavior as indicated in Fig. 2. In this 
way the energy-band structure of Ge is made to 

values to a few Fourier coefficients of the total depend on the values 
potential and that the other Fourier coefficients 

of the parameters 

are zero because of the cancellation between the 
Vs(0)- V,(O), Vs(3) and Vs(ll), the other Fourier 
coefficients of the potential being considered 

crystal potential and the repulsive term near the negligible; the energy-band structure of GaAs 
nucleus. The constant part of the crystal potential 
does not have any effect on the relative positions 

is made to depend on the same quantities plus 
the additional parameter V&,2(3) = VA(4). Using 

0.5 

1 

0.41 

0.3- 

0.2- 

0.1 - 

tm 0 / 

? 

*w 

t 
3 8 19 

-O.l- 

-0.2 
t 

-0.3 

-0.41 

FIG. 1. Fourier coefficients of the total effective 
potential assumed for Ge (in Ry). 

of the energy bands in our approximation, but the 
first order correction contains a term arising from 
the core states, which has the effect of raising the 
energy of s-like states more than that of other 
states. Unlike PHILLIPS we take this effect into 
account by allowing for two Fourier coefficients 
with wave vector 0, one V.(O) for s-like states and 
the other V,(O) for non s-like states. Their differ- 
ence is taken as one of the parameters and can be 
fitted to give the experimental energy gap of Ge. 
The other values of the parameters are chosen 
according to estimates of their order of magnitude 
and to the requirement of reproducing the experi- 
mental energy levels. The experience with Si, 
diamond and BN suggests that the Fourier 
coefficients of the total potential can be repre- 
sented as functions of 1 K12 in the way indicated in 
Fig. 1 for the symmetric part to be considered in 
the case of Ge (see Fig. 2 of Ref. (3) for comparison 
with the case of Si). For the Fourier coefficients 
of the antisymmetric part of the potential we 

o.si 

0.4 

I 

FIG. 2. Antisymmetric Fourier coefficients of the total 
effective potential assumed for GaAs (in Ry). 

this scheme the calculation of the energy levels be- 
comes very simple. For the lowest valence state I‘1 
for instance the formula is: 

In other cases the method of Section (2) has been 
used to split the degeneracies and the quasi- 
degeneracies. The sets of plane waves (300‘~ 
and (221) at the point X and (g-, $, +> at the 
point L have also been considered in addition to 
those reported in Table 3; their effect is that of 
lowering the higher states at the points L and X 
by about 0.02 Ry. We have performed calculations 
with slightly different sets of values for the para- 
meters and in all cases we have obtained basically 
the same energy-band structure with differences 
of the order of 0.01 Ry; since this is the order of 
magnitude of the energy separation of the various 
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Table 6. Energy values at the points l7, X, L in Ge and in GaAs (in Ry) 

Irr. rep. 

I1 
Ls, 
Xi 

Ll 
x4 

L3, 
r25, 

rzV 
Ll 
Xl 

r15 
LB 

Energy in Ge Irr. rep. Energy in GaAs 

-0.80 Fl -0.84 
-0.69 Ll -0.81 
-051 Xl -0.78 

x3 -0.34 
-0.36 Ll -0.34 
-0.12 Xs -0.14 
-0.01 L3 -0.03 
to.09 (0.09) I15 -to.04 (0.03) 
+0.15 (C.15) I1 t-o.14 (0.14.) 
+0.14 (0.14) Ll I $0.15 (30.16) 
+0.20 (-0.17) Xl $0.19 (20.18) 

X3 +0.29 
+0.34 rls +0.32 
+0.39 L3 +0.40 

N.B.-The values in brackets are the experimental values. The scale is adjusted to Is% in Ge 
and Pr(2) in GaAs. The experimental values for Lr(3) and X1(2) in GaAs are the lowest limit 
since they are appropriate to minima in the direction [Ill] and [100].(26) 

minima of the conduction band the choice of the 
parameters is rather critical if the correct order 
has to be obtained for energy levels at different 
points of the reduced zone. With Vs(3) = -0.230 
Ry and V;s(ll) = +0*055 Ry the minimum of the 
conduction band in Ge turns out to be the state 
Ll(2) as experimentally observed. The values of 
V8(0) and VP(O) which adjust the scale for s-like 
and p-like states respectively are VS(0) = -0.60 
Ry and VP(O) = -0.64 Ry. The results obtained 
for Ge are reported in Table 6 together with the 
experimental values as given by PHILLIPS( Our 
results as well as the values of the parameters are 
very close to those of PHILLIPS because of the 
similar interpolation schemes, however our choice 
of the parameters allows a better agreement with 
the experimental results. In Table 6 are also 
given the results for GaAs obtained with VA = 
-0.075 Ry together with the values of a few 
energy levels which can be inferred from the band 
structure assumed by EHRENREICH@~) to interpret 
transport properties in GaAs. The main effect 
of the heteropolar term VA is seen to be that 
of lowering the energy of I’is(1) in GaAs with 
respect to that of I’as, in Ge with the result of 
increasing the energy gap by an amount in 
reasonable agreement with experiment; the energy 
of I’,(2) is also sliehtlv lowered with respect 

to that of Is in Ge so that the minimum of the 
conduction band is now at the centre of the zone. 
While the first effect is probably a general result 

FIG. 3. Energy-band structure of Ge (energies in Ry). 
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of the method, the change in position of the 
minimum of the conduction band is strongly de- 
pendent on the choice of the parameters and on 
the number of plane waves considered so that 
little significance can be attached to it. The 
energy band structures of Ge and GaAs obtained 
by joining the points of Table 6 are sketched in 
Fig. 3 and Fig. 4 respectively. We have not inter- 
polated explicity along the two symmetry lines .I 
and il but we feel confident that the results of such 

0 

-0.2 

-0.4 

-0.6 

Frc. 4. Energy-band structure oE GaAs (energies in 
Ry). 

a detailed interpolation would be essentially the 
same as those found by I?EQLLIPS(~~~. The pre- 
dictions on some energy levels proposed by 
CALLAWAY for GaA@j are confirmed, except for 
the level Ls(lf which is not sensibly changed from 
Ge. The valence band is separated into two sub- 
bands, the lowest of which appears to be very 
narrow; this result could be experimentally de- 
tected by soft X-ray emission as already pointed 
out by KLEINMAN and PHILLIPS. 

6. CONCLUSIONS 

The simplified approach we have given to derive 
qualitative features and quantitative results for 

the energy-band structure does not rule out the 
necessity for more precise calculations, but it is 
justified in view of the present uncertainty re- 
lated to such calculations. Its main advantage is 
that of exhibiting explicitly the role of the lattice 
symmetry, core states and lattice parameter on the 
energy-band structure of different compounds, 
The critical role played by the few lowest Fourier 
coefficients of the potential with the correspond- 
ing terms from the core states explains the good 
results obtained in spire of the poor knowledge of 
the crystal potential. This also points to the con- 
clusion that the energy-band structure is not 
strongly dependent on the potential and on the 
degree of ionicity of the crystal. We feel that our 
method, or the more complete O.P.W. method, 
could be also applied to obtain the conduction 
bands of ionic crystals though it may not be 
appropriate for the energy levels of the valence 
states. 
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APPENDIX 

As an additional condition on the operator A and the 
function 6, we require that the contribution to 4 from 
combinations of plane waves other than Sr and S2 be as 
small as possible. This can be simply achieved by 
minimizing the quantity: 

can be written: 

(~~,~~l~)-(~~,sl~)(sl~,vsl~) 

+(~~,A~~o)-C(~~,S~o)(S~o,~~,)(~~,,ASlO) = 0. 
C' 

From the definition of & and EC and the orthogonality 
between Si” and $9, we finally obtain: 

The first order solution of (A3) is: 

with respect to the parameters (&cASr*). We obtain the 
condition: 

Using the completeness of the set <Sf) equation (A2) 

t~cL,,Aw = (WO-4) &,40>. (A4) 
In this way the repulsive term which appears in equa- 
tions (5) is defined and this allows us to obtain WI’, 81~ 
and the coefficients af. By iteration the solution of (A3) 
to second order is found to be : 

This is the same result we would obtain from equation 
(3) by using for 45 the zero order wave function. Since 
we have established it independently, we can use 
equation (A5), together with equation (3) to obtain to 
first order the following set of linear equations between 
the coefficients al : 

Expressions (AS) and (A6) give equation (7) for the 
second order correction to the energy when substituted 
into equation (6). 


