Three-dimensional solids in the quantum limit of high magnetic fields.
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This paper reviews descriptively work to date on the question of three-dimensional many-body systems subjected to a magnetic field sufficiently strong that the occupied single-electron states lie in only one Landau level. Relevant theory is reviewed, including electron-electron interactions, perturbation theory, and the theory of phase transitions. Basic properties of the quantum-limit state are examined, including the field-induced quasi-one-dimensionality of the Fermi surface. Various proposals for interaction-dominated states in the quantum limit are then considered, beginning with the formation of Density Waves, where some variable varies periodically along the direction of the field. The property in question might be a component of the mean electron spin (Spin Density Waves), the charge density (Charge Density Waves), or the density of carriers of different momenta (Valley Density Waves). Such states correspond to the formation of bound electron-hole pairs. The possibility of superconductivity at these very high fields is also reviewed. It is explained how diamagnetic and Pauli pair breaking are avoided, and why materials which are not superconducting at low temperature may be superconducting at high fields. The possibility of triplet superconductive pairing is considered. The suggested properties of these phases are discussed with regard to magnetic behaviour and d.c. conductivity. A radical proposal known as the Squeezing Solution, representing a completely new behaviour of many-electron systems, is also considered.
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1. INTRODUCTION

In a magnetic field, single particle wavefunctions take the form of so-called “Landau levels”, where the momentum perpendicular to the magnetic field is quantised.1 

Interesting physics can be found in the case where the field applied to a solid is so large that the energy of only one Landau level is below the Fermi energy- the “quantum limit”. 

The quantum limiting case has been experimentally reached in the case of 2-dimensional systems, where phenomena such as the “quantum hall effect” are observed.3
This limit is more difficult to achieve in 3-dimensional systems, where the Fermi energy is much greater. Experimental investigation of this case has thus not been possible to date. There has been, however, much theoretical speculation regarding the behaviour of such systems.  It is this work that is reviewed here.

2. GROUNDWORK

2.1 Electron-electron interaction

Electron-electron interactions, not included in the simplest models of a solid in undergraduate physics, are significant in the quantum limit.

The effective electron-electron interaction includes, as well as the Coulomb force, a force caused by the interaction of both electrons with the ionic lattice, which may be viewed as caused by the exchange of phonons. This force may be attractive, and tends to be short range.2 The effective range of the Coulomb force is reduced by the intervening sea of electrons (screening). 

One way of approaching interactions is through the mean-field approximation2. The interaction of each electron with the expectation† distribution of the other electrons is considered. If one uses single particle states to construct a trial solution, this is called the Hartree-Fock approximation.

2.2 Perturbation theory

We can start with the solution for the non-interacting system, and treat the interaction as a perturbation to the independent-particle solution. The Hartree-Fock theory with a trial solution constructed from independent-particle states is recovered in the first order of perturbation theory expectation values.

The rest of the perturbation series is equivalent to including “higher-order” processes: The total interaction must be expressed as a sum over various possible interactions. Such a summation is aided by visualisation of the constituent processes in terms of Feynman diagrams. (Figure 1)  

2.3 Phases and phase transitions2,5,6
Where inter-particle interactions are present, a many-body system can show behaviour dominated by these. Such phases correspond to cases where the perturbation series for the interaction, starting from independent particles, fails to converge. Such phases occur at low temperatures, where thermal energies don’t dominate the energy of interaction.

Landau6 describes transitions between phases in terms of an “order parameter”, which is an indication of the degree to which a phase transition has occurred.

The order parameter has a microscopic interpretation. For example, that for superconductivity is connected to the expectation density of the bound electron-electron pairs called “Cooper pairs”, which cause superconductivity. 

One can often write order parameters in terms of “field operators”, written (((r) and ((†(r), which, acting on a state, respectively destroy and create particles in position eigenstates at r, with spin (. The superconducting order parameter, which is written  <(((r)(((r)>†, is nonzero only in that state, because such a state is not an eigenstate of the number of electrons. Some of the electrons might be in Cooper pairs, and so not be part of the Fermion system. (Action of (((r)(((r) reduces the number of electrons by two.) Averages of field operators which are zero except in the presence of phase transitions are called “anomalous averages”. Mean field theory can be conveniently formulated using averages of field operators.

To take into account the effect of “fluctuations” away from the most likely state is equivalent to including terms in perturbation theory beyond first order. To do this in non-normal phases it is necessary to use a more general starting point than the independent particle approximation.

3. GENERALITIES

3.1 Landau levels in solids

The “Landau Levels”, the quantum form of the helical orbits of charged particles in a magnetic field, are characterised by three quantum numbers. These are n, related to the magnitude of momentum perpendicular to the field, p, the momentum parallel to the field, and x, which can be interpreted as one co-ordinate of the centre of the orbit.

In solids of finite volume the x,p spectrum is also discrete. The states correspond, for an isotropic dispersion relation, to a cylindrical lattice in momentum space (Fig. 2) While this visualisation identifies x with the direction of the transverse momentum, the usual wavefunctions chosen are not eigenstates of this.

The number of lattice points for a given n, spin-state, and range of p, (p, depends1 upon H:

Nn = eHV(p / 4(2(2c
… Eq. 2

As the field increases, the momentum space separation of states in the radial direction increases, but the angular density of states also increases, so that the total density of states remains constant.  

3.2 The quantum limit

The quantum limit arises when the states with n=0 become sufficient in number to accommodate all the electrons at energies below that of the lowest-energy state with n=1. This is equivalent to the intuitive idea of the quantum limit occurring when only one Landau cylinder fits inside the zero-field Fermi sphere, as can be proved from equation 2.26
The lower the density of carriers in the solid, the lower the Fermi energy and the easier it is to reach the quantum limit. For this reason, some authors have considered the quantum limit in semimetals, where the number of charge carriers is very small. In the usual model, these carriers occur in isolated pockets of momentum space sometimes called “valleys”. (Fig 7)

3.3 The fermi surface in the quantum limit

The fermi surface in the quantum limit, in the momentum-space visualisation described above, is a pair of “fermi rings” (with z-momenta (pF(QL)). (Figure 3) This is important, because interaction effects are most significant for states near the fermi surface.2
3.4 Spin

In the presence of a magnetic field, Zeeman splitting causes energy differences between states of opposite spin. For free electrons, where the spin g-factor is 2, this results in the energies of the nth spin-up and (n+1)th spin-down Landau levels being equal. In a solid, however, the effective g, g*, can be different, with some materials having very low g* (<0.1) 4. This means that it is possible to have a quantum limit situation in which particles of both spins are present, whenever g* < 2. 

3.5 Impurities

Scattering of electrons by impurities can swamp the interaction effects and remove the interaction-dominated phases suggested below. Impurities will be significant if the mean free path of electrons with respect to collisions is less than the length scale of the Landau wavefunctions. This result is found in many different ways in the works considered below, and there is not space here to discuss each individual treatment.

There is also the effect known as “magnetic freezeout”, where the magnetic field causes carriers to bind to impurities. This causes serious experimental problems.

4. PROPOSALS FOR THE QUANTUM LIMIT STATE

Abrikosov29 examined the properties of a solid in the quantum limit, considering both isotropic and semimetal models. He shows that an increase in impurity density causes the conductivity parallel to the field to decrease, and that perpendicular to the field to increase. This is in line with the picture of Landau levels as helical orbits. 

Proposals for interaction-dominated states in the quantum limit will now be considered (Fig 4)

4.1 Density Waves in the Quantum Limit.

Celli and Mermin7 suggested that magnetic interactions favoured a state where there was a small component of mean spin perpendicular to the magnetic field, oscillating with circular polarisation along the field direction8. This is a “spin-density wave” (SDW). A charge-density-wave (CDW), where the density of electric charge periodically varies, is also possible. 

Such density-wave (DW) states are much more likely when the fermi surface shows one-dimensional character:

The phase is formed by the mixing of states with opposite components of momentum along the direction of the wave, resulting in a standing wave. 

To produce a coherent wave, we need many states available with the same component of momentum parallel to the wave direction.  One state of each pair must be “initially” full and the other empty, for otherwise we have done nothing to change the system. We thus seek a Fermi surface with two parallel plane regions: one-dimensional character. Density-wave states are favoured in the quantum limit, for the two “Fermi rings” satisfy just this criterion. The wavevector of the density wave is 2pF(QL)/(, parallel to the field.

The DW state corresponds to the formation of bound electron-hole pairs, because it involves superposition of filled (electron) and empty (hole) states.

Spin density waves are not completely theoretical; they have been used to explain the antiferromagnetism of chromium, which has the appropriate parallel plane regions in its Fermi surface. Density waves occur in other areas of physics, for example, explaining unexpected behaviour in the non-superconducting state of high-temperature superconductors10.

Celli and Mermin established that a spin-density wave is reasonable using Hartree-Fock theory. The trial state was constructed from Landau-level single-particle wavefunctions, modified to include the possibility of mixing expressed above. It is necessary to “hard-wire” the SDW into the trial solution in this way; the Hartree-Fock theory with independent-electron wave-functions, as a subset of perturbation theory, can only produce normal phases. Since the SDW is explicitly assumed in the trial solution, this method cannot show that it is the SDW that forms in the quantum limit. 

The CDW possibility was shown to be favoured in the Hartree-Fock approximation when the wave-vector has a small component perpendicular to the field13, because of the field-induced spatial confinement of the wavefunction.  The SDW is not possible in the g* ( 2 case, so this is the situation usually considered by those advocating a CDW. The field-induced CDW was first mooted by astronomers, because of the huge fields present in astronomical contexts.27
Abrikosov9 went beyond this, using perturbation theory with a purely one-dimensional model, assuming proper consideration of x would produce only differences of order unity.

Abrikosov assumed the interaction was effectively point-like, due to screening, and that all the electrons are in the same spin-state in the quantum limit. The Pauli principle means that the space-state is necessarily antisymmetric, and hence there can be no pointlike interaction between electrons. Abrikosov includes, instead, a pointlike interaction between electrons and holes. Two kinds of pointlike interaction, between like particles and between unlike particles, are used to approximate the true interaction, with the former being identically zero.

Abrikosov found that certain of the perturbed vertices diverge, and thus that an interaction-dominated state is formed. A Feynman diagram such as figure 5 represents an interaction mediated through the temporary creation of an electron-hole pair. When this diagram leads to a singularity, it is a sign that the electron-hole pair is not temporary; that is, bound electron-hole states form. 

Abrikosov used his results to obtain anomalous averages relating to the formation of density wave states. These are of the form < (- (+ > where (+ destroys an electron near the +ve fermi surface and (- a hole near the negative energy fermi surface, and are found to be non-zero. Those corresponding to superconductivity (the formation of bound electron-electron or hole-hole pairs) are zero. 

Abrikosov went on to show that when the coulomb interaction is not point-like at least one singularity persists11. 

Brazovskii12 furthered Abrikosov’s work by abandoning both the neglect of the transverse quantum number and the assumption of pointlike interaction. The relevant Feynman diagrams constitute figure 6. The resulting pattern has been compared to Parquet flooring, so these equations are known as “Parquet equations”.

Brazovskii was able to determine the nature of the vertex singularities resulting from these equations, but not the behaviour of the vertices away from the singularities. From this, he obtained relevant anomalous averages, and demonstrated that a DW state was possible. Without the detailed form of the vertices, the behaviour of the system as the DW transition is approached cannot be determined, and so the onset of the DW cannot be certain.

Tesanovic and Halperin14, considered the quantum limit of a system with valleys. In addition to the SDW with g*(2, they suggested a state where the electrons in different valleys form out-of-phase CDWs. They called this state a Valley-Density-Wave, and verified it using Hartree-Fock theory. Such states have uniform charge density, and are thus have a smaller cost in electrostatic energy than simple CDWs.

What will be the properties of the DW phase? By analogy with chromium, this state is expected to be antiferromagnetic; Brazovskii estimates the magnitude of the jump in magnetic susceptibility at the phase transition.  

Tesanovic and Halperin, however, suggest remarkable properties for the DW state, including a highly anisotropic electrical conductivity tensor, conducting perpendicular to the field, and insulating when the electric and magnetic fields are parallel. The states near the Fermi surface are removed into the DW, and the gap causes insulation just like in ordinary insulators.

4.2 Superconductivity in the Quantum Limit

The suggestion that the quantum limit be superconducting has received much attention recently. Superconductivity is destroyed by a high magnetic field, for the supercurrents that circulate in response to the field and provide the Meissner effect increase the energy of the system. Above a certain field, the non-superconducting state has a lower energy. This is called “diamagnetic pair breaking”.

Gruenberg and Gunther15 were the first to suggest that superconductivity may be enhanced by the action of a quantising magnetic field.

The majority of the work in this area, however, is due to Tesanovic and co-workers4. They argue that the nature of the Landau orbitals means that the form of the local order parameter ((r) giving circulation of supercurrents is naturally satisfied in the quantum limit by the Landau orbitals without a cost in energy.  They support this idea with mean field calculations. In this regime, the superconducting transition temperature actually increases with the field.

Their argument is initially conducted with g*=0. With g* nonzero the Zeeman effect provides another way for the magnetic field to destroy superconductivity, because the Cooper pairs are singlet spin states. This is called “Pauli pair breaking”. 

Pauli pair breaking need not destroy superconductivity provided g* < 2, because the singlet pairs can be formed from electrons in states with differing p15. This is only possible in the quantum limit, where the quasi-one-dimensionality allows a single (p to stabilise all the pairs. 

Several authors17,18,19 look at the possibility of unusual forms of superconductivity where the electrons in the pair are in a triplet spin-state. Such states depend upon the phonon-induced inter-electron potential having an appropriate form. The competition between the triplet pairing and the CDW with g*(2 has been considered18, and a mean-field analysis shows that for some interactions the superconducting state is favoured.

It is postulated that the quantum-limiting field enhances the attractive part of the interaction that gives rise to superconductivity16. The increased spatial confinement of the wavefunctions with increased H enhances the effect of the short-ranged attractive phonon interaction and reduces the effect of the long-ranged repulsive coulomb interaction. This means that a superconducting quantum limit is possible in materials that are not superconducting at low fields.

Rasolt and Tesanovic look at what would be necessary take into account fluctuations but are not able to solve the problem except in the so-called “ladder approximation”. Here, only electron-electron loops are considered, and a superconducting instability is indeed found4. Work in this area has been furthered by Goto and Natsume20 

The properties of the quantum limit are not expected to include a gap in the excitation spectrum at the Fermi energy, unlike in low-field superconductivity.21,22 The resistivity is almost zero parallel to the field, and very small perpendicular to the field4. There is no Meissner effect in this state, because like in the so-called type II superconductors, the field penetrates the sample in a regular lattice of “vortex filaments”.4
It has been suggested that the anomalous increase in the critical field of some type-II superconductors at very low temperatures may be related to the presence of the quantum-limit phase, but this remains controversial24.

4.3 Yakovenko’s “Squeezing Solution”

Yakovenko23 put forward a new suggestion for the quantum limit. This is exciting, for the number of fundamentally different behaviours of many-electron systems, so called “universality classes”, already known is small.

He works with the Parquet equations as formulated by Brazovskii, (Figure 6) but is able, through use of mathematical tricks and numerical calculations, to obtain a complete solution. He assumes the field is small enough that the length scale of the wavefunction perpendicular to the field permits the transverse range of the interaction to be assumed pointlike. This assumption is not made for the direction parallel to the field, so that despite assuming all the electrons are spin-aligned, the electron-electron interaction is not ruled out.

By considering the relative strengths of the singularities due to electron-electron and electron-hole loops in the perturbation series, he shows that for a “net” repulsive electron-electron interaction the DW forms. For attractive interaction interference between the superconducting and density wave possibilities results in an entirely new state.

In this state, termed a “squeezing solution”, the properties of the sample become increasingly one-dimensional as the field increases. Cooper pairs are present in the state, but the expressions giving their ease of formation and expected distance apart are very different from those in conventional superconductivity. Unfortunately, Yakovenko does not discuss what physical properties such a state is expected to have.

This work does not rule out the high-field superconductivity. Although it can be extended to cases where both spin species are present, it fails when g* is very small. Also, the interference between the superconducting and density wave states which gives rise to the squeezing solution can be removed by band structure effects.

5. CONCLUSION

We have seen that a variety of suggestions have been put forward for behaviour in the quantum limit. The predictions made depend on the assumptions made by various workers. Theoreticians have yet to reach a consensus on which possibilities are expected to occur in real materials. 

It may be that application of the ever-increasing computational power will allow the work to be extended to predictions of the behaviour of real materials rather than idealised models. Such numerical power was essential to Yakovenko’s work. 

The advent of experimental methods capable of producing sufficiently high fields to reach the quantum limit experimentally will produce the next major advance in this field. Designers of magnetic-field creating apparatus now have the quantum limit in mind as they work25. There is also the possibility of astronomical observation27.

REFERENCES

1Landau and Lifshitz, “Quantum Mechanics (Non-relativistic theory)”- Butterworth &  Heinmann 1977

2Ashcroft and Mermin “Solid State Physics” – Saunders College 1976

3<Reference to be selected>

4M.Rasolt and Z. Tesanovic, Rev. Mod. Phys., Vol 64, No 3, pp709ff

5J. Callaway “Quantum theory of the solid state” Academic Press 1974 (Two volumes)

6P.M. Chaikin and T.C. Lubensky “Principles of condensed matter physics” C.U.P. 1995

7V. Celli and N.D. Mermin, Phys. Rev. Vol. 140 No. 3A, pp839ff. (1965)

8A.W. Overhauser, Phys. Rev. Vol. 128 pp1437ff. (1962)

9A.A. Abrikosov, Jour. Low Temp. Phys. Vol 2, No.1, pp37ff (1970)

10C.M. Varma, P.B. Littlewood, and S. Schmitt-Rink, Phys. Rev. Lett, Vol. 63, No 18, pp1996ff (1989)

11A.A. Abrikosov, Jour. Low Temp. Phys. Vol 2, No. 2, pp175ff (1970)

12S.A. Brozovskii, Sov. Phys. JETP, Vol 35, No. 2 pp433ff (1972)

13H. Fukuyama, Solid State Commun., Vol 26, pp783ff (1978)

14Z. Tesanovic and B.I. Halperin, Phys. Rev. B. Vol 36. No. 9, pp4888ff (1987)

15Tesanovic, Rasolt and Xing, Phys. Rev. Lett Vol. 63, pp2425ff (1989)

16M. Rasolt, Phys. Rev. Lett. Vol 58, pp1482ff (1987)

17A.V.Andreev, Physica C, Vol 213, pp394ff (1993)

18A.V. Andreev and E.S. Tesse, Phys. Rev. B, Vol 48, No. 13, pp9902ff, (1993)

19L. Kowalewski et. al. Acta Physica Polonika, Vol 91, pp395ff

20H. Goto, Y. Natsume, Physica B, Vol 216, pp281ff (1996)

21Dukan, Andreev, and Tesanovic, Physica C Vol. 183 pp355ff (1991)

22Z. Gedik and Z. Tesanovic, Phys. Rev. B, Vol 52 No. 1, pp527ff (1995)

23V.M. Yakovenko, Phys. Rev. B, Vol 47, No. 14 pp8851ff, (1993)

24Mackenzie et. al. Physica C Vol. 235 No. 1 pp233ff.

25B.E. Kane et.al. Review of Scientific Instruments, Vol 68 No 1, pp3843ff.

26Author’s personal work.

27J.I. Kaplan and M.L. Glasser, Physical Review Letters Vol 28 pp1077ff (1972)

29Abrikosov, Sov. Phys. JETP, Vol. 56 pp1391ff (1969)

† Both quantum mechanical and thermal averages can be involved in this process


† Note the opposite spin labels. Conventional cooper pairs involve electrons in singlet spin states.





