
1. The group velocity in a homogeneous medium is vg = rk!; in magnitude
and direction

This is a standard formula. To derive it, consider a gaussian wave packet
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Expanding !(k) = ¹! + (k ¡ ¹k) ¢ vg , where vg is rk! evaluated for k = ¹k, and
putting k = ¹k + k0, one …nds approximately

Ã(r; t) = exp(i¹k ¢ r ¡ i¹!t)
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Manifestly, in this approximation Ã remains localized and moves with velocity
vg ; the energy contained in Ã also remains localized and moves with velocity
vg . Thus vg is both the group velocity (i.e. the velocity of a group of waves)
and the velocity of energy propagation.

The exact Ã will disperse more or less depending on higher derivative of
! and the notion of group velocity (as derived here) is valid as long as this
dispersion is small. See point 4 for a more general treatment.

2. If one considers the superposition of two waves with wave vectors k1and
k2 and corresponding frequencies !1 and !2, one sees a time-varying interference
pattern (except that the pattern is time-independent if !1 = !2, as is the case
when jk1j = jk2j and ! depends only on jkj). For two waves of equal amplitude
(which is the case considered in Greg Brown’s notes), the interference pattern
propagates with velocity û(!1 ¡ !2)= jk1 ¡ k2j, where û is the unit vector in
the direction of k1 ¡ k2. For small k1 ¡ k2 this interference pattern velocity
is û (rk! ¢ û), or, in words, it is equal to the projection of the group velocity
in the direction of k1 ¡ k2. This is equal to the group velocity rk! if k1 and
/k2 are collinear and ! depends only on jkj, but not in general. It is also worth
stressing that the interference pattern velocity can be de…ned only if the two
waves have the same amplitude. If the waves have di¤erent amplitudes, the
interference pattern changes with time in a complicated manner and cannot be
obtained at time t by rigidly shifting the pattern at t = 0 by an amount vt for
any v .

3. To understand the meaning of the interference pattern velocity, consider
two gaussian packets with average vectors ¹k1and ¹k2 and the same spread ¾.
Suppose at t = 0 the two packets are both centered at the origin. The resulting
wave packet displays an interference pattern similar to that discussed in 2, but
con…ned to the width of the gaussian. At later times the interference pattern
is visible until the two packets separate, and after that we have two separate
gaussian packets moving with group velocities vg1 and vg2. If we regard the
two separate gaussian packets as a single packet, it is clear that the propagation
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velocity of the center of this non-gaussian packet is (vg1 + vg2)=2. This is also
the velocity of energy propagation and must be regarded as the group velocity of
the non-gaussian packet, not only after the packets separate, but also when they
overlap. It is clear that this group velocity (which is basically in the direction of
¹k1+ ¹k2) is di¤erent from the velocity of propagation of the interference pattern
(which is in the direction of ¹k1¡ ¹k2), unless ¹k1 and ¹k2.are collinear (as already
discussed).

4. The example given in 3 is consistent with the general de…nition of the
group velocity for any localized wave packet

Ã(r; t) =

Z
d3k

(2¼)3
exp(ik ¢ r ¡ i!t)A(k)

which is as follows. The average position of the packet is

¹r(t)=

R
r jÃj2 d3r

R
jÃj2 d3r

assuming that the integrals exist (which they do if the packet is localized, by
de…nition). Then the group velocity is

vg =
dr̂

dt

It is left as an exercise to prove that

vg =

R rk! jAj2 d3k
R

jAj2 d3k

or, in words, vg is the average of rk!, and obviously, if A(k) is strongly peaked
at ¹k, then vg is rk! evaluated at ¹k: The proof of the “exercise” can be found
in quantum mechanics books and hinges on the fact that

r exp(ik ¢ r) = ¡irk exp(ik ¢ r):

It helps to note that
R

jÃj2 d3r is time-independent and equal to
R

jAj2 d3k=(2¼)3,
so both can be taken to be 1.

5. In conclusion, the formula for the group velocity is quite general and
Pendry does not pull it out of the air. The only reservation I have is that the
argument given in 4 works for Schrodinger waves, and one should examine more
carefully the case of Maxwell waves, where both -i!t and +i!t are present. I
quit here.
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