THEOREM: If $\tilde{A}(r ; t)$ is a wave packet,

$$
\begin{equation*}
\tilde{A}(r ; t)=\frac{Z}{\left(2^{1} /^{3}\right.} A(k) \exp (i k \phi r i i!(k) t) \tag{1}
\end{equation*}
$$

then, provided of course that the integrals exist,

$$
\begin{equation*}
\frac{@}{@}^{Z} d^{3} r r j \tilde{A}(r ; t) j^{2}=\frac{d^{3} k}{\left(2^{1} / \AA^{3}\right.} r_{k}!j A(k) j^{2} \tag{2}
\end{equation*}
$$

(T he restrictions on the integrals mean that the packet must be localized both in coordinate space and in momentum space)
---ー-----
Start from
$r j \tilde{A}(r ; t) j^{2}=\tilde{A}^{\tilde{y}}(r ; t) r \tilde{A}(r ; t) \frac{1}{i}^{Z} \frac{d^{3} k}{\left(2^{1} / /^{3}\right.} \tilde{A}^{\tilde{x}}(r ; t)\left[r{ }_{k} \exp (i k \phi r)\right] A(k) \exp (i i!(k) t)$
Integrating over r and using the complex conjugate of Z

$$
d^{3} r \tilde{A}(r ; t) \exp (i \text { ik } \downarrow r)=A(k) \exp (i \quad i!(k) t),
$$

which is the inverse of Eq. (1), obtain
$\begin{aligned} & Z \\ & d^{3} r r j \tilde{A}(r ; t) j^{2}=\frac{1}{i}{ }^{Z} \frac{d^{3} k}{\left(2^{1} A^{3}\right.}\left[r_{k} A^{x}(k) \exp (i!(k) t)\right] A(k) \exp (i i!(k) t) \\ &=\frac{1}{i} \frac{d^{3} k}{\left(2^{1} /^{3}\right.}\left[r_{k} A^{x}(k)\right] A(k)+t \frac{d^{3} k}{\left(2^{1} /^{3}\right.}\left[r{ }_{k}!(k)\right] j A(k) j^{2}:\end{aligned}$
The proof is completed by taking the time derivative.

