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Resonant processes in a frozen gas

J. S. Frasier, V. Celli, and T. Blum
Department of Physics, University of Virginia, Charlottesville, Virginia 22901
(Received 4 August 1998

We present a theory of resonant processes in a frozen gas of atoms interacting via dipole-dipole potentials
that vary ag ~2, wherer is the interatomic separation. We supply an exact result for a single atom in a given
state interacting resonantly with a random gas of atoms in a different state. The time development of the
transition process is calculated both on and off resonance, and the linewidth with respect to detuning is
obtained as a function of time We introduce a random spin Hamiltonian to model a dense system of
resonators, and show how it reduces to the previous model in the limit of a sparse system. We derive
approximate equations for the average effective spin, and we use them to model the behavior seen in the
experiments of Anderson, Veale, and Gallagh®nys. Rev. Lett80, 249(1998] and Lowell and co-workers
[Ph.D. dissertation, University of Virginia, 1998, atthpublished]. The approach to equilibrium is found to
be proportional to expf{ \/qut), where the constany is explicitly related to the system’s parameters.
[S1050-294{@9)10505-3

PACS numbd(s): 34.10+4Xx, 34.90+q

I. INTRODUCTION It was surmised in Ref.1] that the linewidth must be of
the order of the average interaction energy. This interaction
Frozen gases are a new and in some ways ideal laboratogplits thess' -pp’ degeneracy and the subsequent migration
in which to test our understanding of quantum theory in aof the p state to other atoms broadens the energy of this
complex system. With present technology one can manipw-glementary excitation” into a band, as appropriate to an
late and detect electronic processes with an extraordinaré(morphous solid. Cluster calculations were performed to il-
selectivity and precision; furthermore, the translational temq,sirate this band formatiofi3], but averaging over atom

Eer_ature (()jf thhe g?js. can be IO\;vered to the point er‘:ere it CS ositions was done by order-of-magnitude arguments only.
e ignored when discussing electronic processes. Frozen ourachkoet al. [2] pointed out, in connection with their

dberg gases have the added advantages that their states &8 eriments on a different system, that the “walking away”

well understood, and many processes occur on a microsecs o . " )
yp of the p excitation from its original location should be re-

nd tim | ily allowing for time-resolv ros- e . .
ond time scale, easily allowing for time-resolved spectros grded as a diffusion process, and dynamical equations for

copy. Pioneering experiments on resonant processes in thegP ¢ tion in th f this diffusi
gases were carried out by Anderson, Veale, and Gallaghé € resonance transition in the presence ot this diffusion were

[1] and Mourachkeet al. [2]. The present work was moti- ‘ritten down[5]. _ o
vated by the desire to understand those experiments and the 1N€ Present work builds on these earlier insights, but goes
subsequent work of Lowell and co-workdi4], highlight- conS|derapIy fur.tr_]er in the process of a_ccurately averaging
ing the dynamic aspects of these resonant, many-particle sy8ver atomic positions. It turns out that this averagiaffec-
tems. The measurements are of mixture$¥®b atoms ini- tively, a phase averagingtself produces an exp(y/ved)
tially prepared in the 28and 33 states(henceforth to be dependence at large times, characteristic of a diffusive pro-
called thes ands’ states, respectivelyThere are initiallyN  cess. A report of the newer experimental data by Lowell
atoms in thes state and\N’ atoms in thes’ state. The tran- et al. in comparison with the results of the present theory is
sitionss'—pp’ is monitored, wher@ refers to the 2g state  being submitted separatel4]. In this paper we give a full
andp’ refers to the 3@ state, at and near resonance, whereaccount of the general theory, and we discuss in detail in
€.t €= eé-i- €, . Some of the experimental features we wishSec. Il a particular case that cleanly shows the effects of
to understand are the rapid rise followed by a slow approachandomness and phase averaging. In this simple case, the
to the saturation value of the signal and the width of the lineaveraging process can be carried out exactly. For the practi-
shape(in the detuningA = e,+ €,— € — €;) as a function of  cally importantr ~3 interaction potential, one can proceed in
time. a mathematically elegant way and obtain closed formulas
Each individual interaction leads to a coherent oscillatorythat can be evaluated by a computer package, or in some
behavior, but as we will see below, averaging th€ cases by hand. It appears to be a fortunate coincidence that
—pp' interaction over the random positions of the atomsthe r 3 potential accurately describes the dipole-dipole in-
greatly smooths out the signal. The effective “incoherence”teractions that are so prevalent in nature. Some aspects of
brought about by the p— ps procesdqthe “walking away”  this approach are easily extended to more general interac-
discussed by Mourachket al.[2]) completes the smoothing tions; however, the ~3 dependence has special properties
out of the on-resonance signal, but has less effect on therhich, when coupled with the assumption of a random dis-
off-resonance signal(The s’'p’—p’s’ process is also tribution of atoms, lead to relatively simple results.

present, but is smaller thaap— ps by a factor of 16 in this Although this work was stimulated by experiments on Ry-
case, and can therefore be neglected to the first approximaberg atoms, it is generally applicable to resonances induced
tion.) by dipole-dipole interactions. These may be common in
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highly excited gases and in molecular systems. Frozen, resoation, and therefor&/, can be taken to be independent of
nant gases may even exist in interstellar clouds. time. As the temperature increases one approaches the oppo-
We develop the theory in three stages. First, in Sec. Il, wesite limit, where binary collisions control the resonant pro-
discuss a singles’ atom interacting resonantly with a sur- cesg8]. There must of course be a gradual transition, which
rounding gas ofs atoms, without any possibility for the  is beyond the scope of this paper.
excitation to “walk away” through ansp—ps process. The set of differential equationd) can easily be solved
When the result is averaged over the positions oftams,  with the initial conditionay(t=0)=1 andc,(t=0)=0 for
it corresponds to a “sparse” system f atoms, i.e., a sys- all k, yielding
tem whereN’<N. We do not know of an existing experi-
ment to which this treatment applies, so this section can be
viewed as a theoretical prediction of the outcome of a pos-
sible experiment. Our purpose here is also one of exposition:
this example allows us to introduce in the simplest context
some of the mathematical techniques used throughout the,
paper. In Sec. lll, we complicate things somewhat by allow-With
ing the s state to decay away exponentiallyr more gener-
ally, but explicit formulas are given for the exponential de- N
cay). If the s state decays diffusively, our treatment here is V2= E Vﬁ. (4)
related to that of Mourachket al.[2], except for the intro- k=1
duction of mathematically exact phase averaging. Here, too,
the treatment applies only to the case whefe<N. Finally, ~ gquation(1b) then givesa,(t). The experiment monitors an
in Sec. IV we mtroduc_:e an effective spin Hamlltonlatl which optical transition from thep’ state (or, equivalently, from
fully models the atomic system for all valuesdfandN’, as  5q of thep state$, which is proportional to
well as for any strength of the resonant process’ (
—pp’) and of the mixing processes|f—ps and s'p’
—p’s’). This system is relevant to the experiments of Ref. ) ) 4V?sirt (VA% +4V? t/2)
[1] and Lowell and co-worker3,4]. We show its equiva- S(1)=1—|ao(t)] =2 od)|?= PPN :
; . ; k A“+4y
lence to the previous results in the sparse lihit €N) and (5)
discuss briefly the approximate solution in the non-sparse
case. The results in this section are summarized elsewhere
[4], but the derivation is presented here, as are additionalVe see that the sign&(t) exhibits Rabi oscillations.
formulas. The limitations of the present theory and some of We apply this result to a system bf atoms, initially in
the many possible extensions are discussed briefly in Sec. \étates’, randomly dispersed among a much larger nuntber
of s atoms. In this sparse limit, the signal is proportional to
Il. SPARSE ss' —pp’ PROCESSES N’ times the sample average $t), and the sample average
is equivalent to an ensemble average over the atomic posi-
We consider one atom, initially in the statg in interac-  tionsr, that are hidden in’? [see Eq(7) below]. In general,
tion with a gas ofs atoms through arss'—pp’ process. averaging is more easily done on the Laplace transform of
Like Mourachkoet al. [2], we describe the system by the the signal, which in this case is

2iV e "AV25in(AZ+4V?1/2)
JAZ+ 42 ’

()

Ck(t =

equations
iag=Aag+ >, ViCk, (1a) ~S(a)=f0 e “' (1) dt
K
. 1 2V2
icyk=Viag. (1b) =
a g?+ A2+ 4)?

Hereag(t) is the amplitude of the state in which the atom at 2 A2
the origin is in states’ and all other atoms are in stase _ i __“ +A _ (6)
while ¢, (t) (with k running from 1 toN) is the amplitude of 2a a’+ A2+ 4?2

the state in which the atom at the origin is in stateand the
atom atry is in statep, while all the others remain in stase
Vi is the interaction potential anli=e,+ €,— €~ €5 is the
detuning from resonance. We will assume tiatis of the
dipole-dipole form

Later in this paper, more complex models are solved directly
by Laplace(or Fouriep transforms; thus E(6) is useful for
comparison with these more general results and approxima-
tions.

V= : 2 A. Averaging over atom positions

To compute ensemble averages, we use the following re-
The atoms are sulfficiently cold that during the time scale ofult, valid in the limitN>1, for a random distribution of the
interest they move only a very small fraction of their sepa-variablesr:
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N

1 ” E —vVB
(eﬂvz)avsz d3rl. . 'dng ex[{ —ﬁkgl Vz(rk) F(Vz)av: jO dB F(B) € #

1 N 1 j” 2, [©, =~ 25/,2
Y 3 _ 2 I d efy/4f dBF e v Bly

[Qfdrexp[ ,BV(r)]] =], 4 , dBF(B)

1 2 N 1 (= 2

- 1——f der[1—e A (r>]] _ f ] e—y2/4F(v ) s

[ Q Talo y v (13

N[ g —BVA()

—exp — | dr[l-e 1t (7)  This last set of relations implies that we can average a func-

tion F(V?) over the positions of the interacting dipolést-
where ) is the volume of the gas in the trap. In particular, OMs in our caseby replacing)’® with v?/y* and integrating

for the dipolar interactio’V/(r)=puu'/r3, we have over the kernel expfy?/4)/\/mr. This trick is not always use-
o ful, as it can lead to highly oscillatory integrals. It is, how-
, 4 ient in determining the line shape in the satura-
3011 o Bl Ur® , ever, convenien g p
f d*r[1—e M = —— pp VB, ®  tion (t—o0) limit (as shown beloy
leading to B. Averaged signal and line shape
(efﬂvz)af e VB, 9) Starting from Eq.(6) in the form
~ 1 a?+A?% (=
where )= — - J’ dge AHa%ad (14
4732 N 2a 2a 0
v= aHm (10 _ _
3 0 and using Eq(9), we obtain
For the typical densities in the experiments of Réfl and 2

Lowell and co-worker$3,4|, v is on the order of MHz(In

the Appendix, we repeat the arguments above with an inter-
action that includes the angular dependence due to the rela- )
tive positions of the dipole moments and assumes that all of _ V7 v p(v )erfc( 3) (15)
the dipole moments point in the same directid®incev has 2 aA 2 A’

the units of an energy, it must be of ordgm'N/Q on

dimensional grounds. It is still remarkable, however, that EQyypere A2= o2+ A2 Expanding inv/A and performing the

all the averaged quantities in this section.

wdlg e—BAz—ZvvF

S(a)a\,:Z— 2a 0

Using Eq.(9), we can evaluate the average of any func- Jr & (—pt)"
tion F(V?) provided that it can be represented as S(t)aVZTUtE —
= n
. ) " Or(n+2)r<7)
F(v2)=f dBF(B)e A" (1)
0 c n+1 n+2 n+3  A%? 16
Further, we can use the identity X 1F2 2 22 4 (16
e‘”"ﬁ—i * dvexpl — Y_Z_ @ (12 where \F(a;, . ...a,;b1, ... by;2) is a generalized hy-
o y 4 2|’ pergeometric function. It is known thagf, is related to the
integral of a power multiplied by a Bessel function. Expand-
so that ing ;1F, yields the double series

\/; ® ® (_ 1)n+mvnA2mtn+2m
S(t)av_TvtnE::o m§=:0 n+2m+2 ’ (17
A™n!m!T 5 (n+2m+1)

which can also be obtained directly by expanding 8&) in 1/« and then taking the inverse Laplace transform. The double
series can be rearranged to obtain the following expansion in the detuning:

t (=d o1 A?pt\m
&t)av=\@f072ep2 —(—2—” Jom+1(V8UPL). (18)

m=0 mM!
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The first term in this expansion, the on-resonance signal, can t)
; Sol

be written as w=1\/— : (21)
Si(t)

Jr 3 p2t? then 2v would be the full width at half maximurfFWHM)

S(Dala=0= - ut 0F2< 15 T) if the line shape were Lorentzian. The quantityv is plot-

ted in Fig. 2. For smalbt, we explicitly havew= 12.

11 11 v#? While the 1t behavior follows from the transform broaden-
+ 272 oF2 %2 a || (19 ing argument, or even simply from dimensional analysis, the

coefficient\/12 is a prediction of the detailed theory.

The line shape at saturatioh-{ o) can be obtained using
which can also be obtained by settingequal to zero in Eq. the relation in Eq(13), which yields
(16) and summing the resulting series. Plots S3ft),, for

several values ofA are shown in Fig. 1. Notice that the 02

initial slope of the signal is independent af This feature {1—cos( \/ A%+ —t 1
translates into resonance widths that vary addr/smallt — S(t) :i f * dy e v y

the so-called transform broadening discussed by Thomson av Jmlo y A2 '
and co-workerd6,7]. With v on the order of MHz, this 1+ —zy2

initial rise occurs in a fraction of as. Another point of v

interest is that the averaging is much more effective at (22)

smoothing out the oscillations fa&kx=0 than it is forA+#0.
We can construct a measure of the width from the firs

I!:or large times the cosine term above averages to zero, giv-
two terms in theA expansion, Eq(18). If n

) 4 \/; v v? v
S(t)4,=So(t) +A2S,(t) + O(A%), (20) S(t—®)ay="5" y€x X erfd 1/, (23
and we define which can also be extracted from the smalbehavior of Eq.
(15). This line shape is plotted in Fig. 3. The FWHM is
0.8 T T approximately 4.6. Also plotted is a Lorentzian line shape
5.0

0.6
40

3.0 |

Widthiv

20
0.2
1.0 | b
0.0 L :
0.0 5.0 10.0 15.0
vt
0.0 L .
0.0 5.0 10.0 15.0

FIG. 1. Averaged sign&i(t),, for A/v=0, 1, and 2(the upper,
middle, and lower curves, respectivebalculated from Eq(17) for
the sparse limit. Thess' -pp’ process is averaged, tisg-ps pro- FIG. 2. “Width” vs time, as given by Eq(21), shows a dip
cess neglected. The Rabi oscillations are not completely washed outhich is associated with the stronger and higher frequency oscilla-
by the averaging process and are more pronounced off resonancéions seen at larger values Af as shown in Fig. 1.

vt
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0.50 ' ' ' ' When Eq.(1b) of the last section is replaced with Eq.
(25), the solution of the new system can be obtained by
replacingA with A+ivy in Eq. (3) and in the corresponding
equation forag(t). Then

2V2%e” "[coshyt) — cog xt)]

N
L(t)zgl lc(t)]?=

x2+y?
(26)
wherex andy are real numbers that satisfy
§, (x+iy)2=(A+iy)2+4V2. 27)
At resonance, we have
(VaVZ—H20) if y<2vy 08

Y= (o7=av2) if y>2v.

Note thatlL (t) decays more slowly in the latter case. Hence
the larget limit of L(t),, will be dominated by smalb. This
remains true off resonance as well. The smaklkxpansion
foryis

o'000 0 1'0 2'0 3'0 4'0 5.0
. . 8 A 8 . 2
AN 2V%y

(29
FIG. 3. Saturation t(—) line shape[Eg. (23)]. It is not a
Lorentzian but a Lorentzian averaged as in E2P). The dashed

line is a Lorentzian with the same height and FWHM, drawn forThus we can conclude that, for the leading behavior at large

comparison. times,

2
with the same height and FWHM. Notice that this line shape lim L(t)cexp — 2V%y i (30
is sharper than the Lorentzian for small and falls off more e 2, .2

slowly for largeA.
Using Eqg.(9), we obtain an asymptotic behavior of the av-

lll. SPARSE ss —pp’ IN A BATH OF sp—ps erage
We again consider one atom, initially in stafg in inter- lim L(t) % eXp(— V7ed) (31)
action with a gas o atoms via thess' —pp’ process, but t—oo
we now allow forsp— ps processes by modifying Eqél)
to where
. 202y
iap=Aag+ V,Cy, 24 =—. 32
0=Aag+ > Viey (249 Yei 2, 2 (32)
. Let us now examine the full time dependence. We begin
|Ck:Vka0+E| Ukic (24D with the Laplace transform df(t) which is
2/,3 ~ 2s)?
where Uy,=u/ry,, and the other symbols have the same (@)= , (33
meaning as in Eq91). Although Eqgs.(24) are exact, they st (X2 —y?)s?—x%y?
are difficult to solve exactly. We therefore introduce the o )
equation wheres= a+ y. Substitutingx andy from Eq. (27) gives
. . 2
iCk=Vyag—17Ck (25) L(a)= 2sV (34)

s*H(A%— Y2+ 4V?)?— A%y?
in place of Eq.(24b), wherey is an effective inverse life-
time. In a crude way, the-iyc, term in Eq.(25) describes The signal is still proportional tdN’S(t), with S(t)=1
the “walking away” of thep states from the neighborhood —|ag(t)|2. It is no longer true that *|ag|>==,|c|?, be-
of the resonating atom at the origin. One can see from Eqcause,|c,|? is not the total probability of finding p state,
(24b) that the model of Sec. Il is recovered in the lipit  but only the probability of finding g state that has not
<u'. “walked away.” However, the relation
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1.0
(NG B CTCRN S
k k
with the usual initial conditions, enables us to obtain
. 0.8
S(t)=L(t)+2yf L(t")dt’ (36)
0
and
0.6
~ 2v\.
S(a)=|1+ —|L(«a). (37) |
@ S
N
For y>0, S(t) rises from 0 to Jor more accurately to (1 04

+N’/N)~1, as seen in Sec. [Vwhile for y=0 it saturates
at 2V?/(A%+4V?). What happens for smajl is a quick rise
(on the average time scale of ') to 2V2/(A%+4V?), fol-
lowed by a slow rise to 1.

Averaging these equations is done as in Sec. Il. For in- g2
stance, averaging(«) yields

2
L(a)y= g éexp( %) erfo( %) , (39

0.0 L L
0.0 5.0 10.0 15.0
where vt
BZ=(SZ+A2)(32— yz)/sz, (39) FIG. 4. Averaged sign&i(t),, for y=v, andA/v=0, 1, and 2

(the upper, middle, and lower curves, respectiyebiculated from
which is the analog of Eq15). The inverse Laplace trans- S(@)a~[1+(2¥/a)]L(@)a and Eq.(38). The approach to satura-

form of this expression is rather complicated, but it simpli- ion goes like expf Vyed), with yeq given by Eq.(32).
fies immensely at resonance, becoming

J7

. represent thes’ and p’ states aftr,, with a spingy,. The
(="
L(t)av= 2 Un§=:o n!

Hamiltonian is then

2\ n/2 t
2L> eiytJOdTTn/2|n/2(’yT).
40
49 2 [8s+(8p_83)0;0;]+2 [8é+(8£)_85’;)0-;’0-|2’]
This result can also be expressed in terms of generalized K’
hypergeometrics, and in that form appears similar to Eqg.
(16). One can use the asymptotic behavior of the Bessel +2 Viwlor oo +togo 1+ 2 Ugaror, (4
function in Eq.(40) to confirm the largd- dependence ar- Kk’ kl#k
gued earlier in Eq(31). An expansion in inverse powers of
a, leading to an expression similar to E@.7), is easily where
obtained by computer. Figure 4 shows the average signal

S(t) ,y for y=v, andA/v having the values 0,1, and 2. One / 2
can see that the approach to one becomes slower as the de- Vi = il and Uklz'“__ (42)
tuning is increased, as predicted by E¢gd) and(32). This Ire=rel® Ire—rnl?

behavior is the same as that found by Mourackkal. [2]
under the assumption that the time development ofcthis  For the experiments under consideratipns4,’, and the
governed by a diffusion equation. We see that in the preserfp.ps coupling x?, which leads to “spin diffusion,” is

approach it arises simply from phase averaging. The resularger than thess'-pp’ coupling ., which is responsible
for the on-resonance signal is shown in Fig. 5. As one wouldor the resonant energy transfer.

expect, for small values of the smallt features of Fig. 5 The strategy is to write down the evolution equations for
resemble those in Fig. 1 of Sec. Il, where #¥—ps pro-  the spin variables, take the expectation values over the initial
cess is neglected entirely. state|i) (which consists of all spins downdiscard the ex-
pectation values of quantities that fluctuate incoherently,
IV. INTERACTING RESONANT PROCESS solve the resulting equations, and finally average over the

atomic coordinates, andr,,. The experimental signal is

We now considelN atoms at positions, which are ini- proportional to the number qf’ states>,n, , where

tially in states and N’ atoms at positions,. which are
initially in states’. We represent theandp states at, with ) .
the down and up states of an effective spin and similarly N =3 (1+{o). (43)
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1.0

0.8

0.6
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0.4

0.2
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vt

FIG. 5. S(t) .y, as in Fig. 4, calculated at resonanee<{0), for
inverse lifetimesy/v=1, 0.1, and 0.02the upper, middle, and
lower curves, respectivelyFor the largest value of the oscilla-
tion is completely gone.

It should be noted thdi) is not the ground state, nor does
the system relax to the ground state, because it is essentially
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We reduce the expectation value of this equation as follows.
In the first line, we assume thdui(a, oy, + 0, 0,,)) is
negligible unless’=1", in which case it reduces t}).
Similarly, (o, (oy o + oy o)) is replaced by(a},) 5y .
The third line contains only incoherent terms, which we treat

by assuming that they lead to a Lorentzian broadening by
letting

Uﬁ;k Uya —iyoy (48)

when computing these terms. With this crude approximation
and Eq.(46), we obtain

~ ., vd
% VkrkUk|<O'§(0':,0'|++0'krO'| )>:§&<O'i,> (49)

Collecting results, we obtain

1 d?
Edt2< W) 2 ViewVie (o) + (o))
v d
_§a<UE'>_Agk’: (50)
where
gk/(t)zzk Vk/k<0'|:r,0'|r+0'|:,(7'lz>. (51)

decoupled from other degrees of freedom for the duration of

the experiment.
We start with basic equations of motion such as

d
o Aak,+ak,2 VikOx » (44)
d
i UKE ka'Ukr+Uk2 Ugo, (45)
'dZ—22v Fol —op oy, 46
Ia()’k,— - k’k(o'k Oy — 0y U'kr), ( )
whereA is the detuning from resonan¢@], and obtain
1 d?
> e a'k, % Vk'kal’U'k(a'ka'w+0'k/0'|f)

—% Vk/kV|kIO'i,(0'k_0'|++0'|2—0'|_)

v + + - -
_kIZ;k VikUyo(o, o +o,00)

Using arguments similar to those used to derive (&), we
obtain the approximate equation

dgkr dnk/

¢ = A 799, (52

whereg=(1/N")=, g, , and theyg term has been put in by
hand to preserve conservation. These equations imply

dg_Adn’ 53
a_ F’ ( )
where
1
n'=—> ng, (54)
N

with the initial conditiong,.(0)=0.

At this point, it is more convenient to work with the'
occupationny,, defined in Eq.(43), and with the corre-
spondingp occupationn, . For comparison with experiment
we will need the sample average, which correspondd(tp
of Secs. Il and lll. Taking Laplace transforms of E¢S0)
and (52), we obtain
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AZ
) 5 @ ~
a +2§k: Vi T ya+ 2ty Ny
:EZ V2, —2> V& n —A? n’
P = Vi aty '’

(59)

where the tildes denote Laplace transforms, af(dr) is the
sample average af, ().
We can obtain a similar equation fog, and we are then

left with coupled equations which we are not able to solve

However, ifN~N' we can simplify the problem by assum-
ing that the strong p-ps coupling acts to randomize the,
spins, while the resonamsis’ -pp’ processes are entirely co-

herent. Accordingly, in Eq(55) we replacen, with its
sample average and obtain an equation far,, alone by
using the exact relatioNln=N’'n’, which follows from the
fact thatp andp’ states are created in pairs by g, term
in Eq. (41). We solve forn,, and average over a random
distribution of atoms,
(I/N") 2,/ n,, with an ensemble average, and obtain

(1/a)(1—C?F,)

n_1+N, N,c2 vA” F | o
N N atyl
where
C?=a?+ay+ @A® (57)
CaeTay a+ty’
andF,, is the ensemble average of
-~ 1
F=——. (58
C2+2§k: V2
For N=N’, Eq. (56) simplifies to
~ 1/a)(1-C?F
-, (W) i ) 59
2—(02—7 o
aty

F,, is computed in the same way as the averages iof
Sec. Il andL in Sec. lIl. The analog of Eq15) is

CF(a)y=1 \/; e v* erfd — (60)
@) a=1—\/m=exp — —,
2 2C M 2c? J2¢

with v given by Eq.(10) and C by Eq. (57). One way to
computen’(t) is to expandn’(a) [Eq. (56)], in inverse
powers ofa. This gives the analog of Eq17), but we have
not found a simple expression for the coefficients.
Figure 6 shows the signal as calculated in Ex§) for v
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FIG. 6. Averaged signah’(t) for N=N’, y=v, andA/v=0,
1, and 2 (the upper, middle, and lower curves, respectiyebs
calculated from Eq(59). While the oscillations are “damped out”
for A=0, they remain foA/v=1 and 2.

ing, and some nonmonotonicity is evident. Consequently, the
dip in the width seen in Fig. 2 is also present in this calcu-
lation, providedy is not too large.

Figure 6 differs from the corresponding Fig. 4 of Sec. IlI
in one important respect: the on-resonance signal saturates to
% rather than to 1. For general valuesandN’, Eq. (56)
predicts that ast—x (i.e., as @—0) N’n’ approaches
NN'/(N+N"), as expected from simple kinetics for the two-
body reactionss’'—pp’. As in the previous sections, the
energy scale is set hy, which according to Eq.10) has the
value 5.72uu’N/Q. As discussed in Refl], this quantity
is of the correct order of magnitude to account for the data.

Reduction to the sparse limit

We now show explicitly how the general spin-variable
formalism relates to the coefficierdg andc, of Secs. Il and
Il when there is only a single atom that can be in tep’
pair of stategi.e., when only a single spin variable of the
type o is presen). The key to the correspondence is that in
this case the initial stat¢i) (which consists of all spins
down) evolves to

It)= ao(t)+§ cqVooq i) (61)

=y, andA/v=0, 1, and 2. We see that the on-resonanceat time t, where the spin variables now denote time-
signal is devoid of any oscillations. Off-resonance, the oscilindependentSchralingen operators. With the understanding
lations are not completely washed out by the phase averaghatr,,=0, we have
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(o) =(tlop|ty=1-2]ay(t)|?, (62 KegpN’<N: physigally, we consider a sparse distribution of
(initially) s’ states in a gas whesgp-ps flips take place at a
(07 =2|c (1)]2—1, (63) non-negligible rate. The first question we should answer is:
after thess' —pp’ transition, does the state “walk away”
(crl:“,a;>=a0(t)cﬁ(t). (64 0 infinity or remain localized? In this paper, we have as-

sumed that localization does not take place, or, if it does, is

It is then clear that the expectation value of Edp) is important only in the very sparse limit where the localization

equivalent to the following, which is itself a consequence oflength is smaller than(/N)*=. Leaving much room for fu-
Egs.(1): ture work, we have simply introduced a lifetime * for the

p state to “stick around.” The spectral function for the
d propagatings p-ps flip is then simply a Lorentzian. We have
el 2_ F_ ot k _ - -0l (
dt|aO(t)| _zk: Vi(@oCy—agC), (69 obtained tentative estimates gfwhen it is entirely due to
thesp-psflips, and we plan to report these results in the near
whereV, is short forV,,.. Similarly, the equations fofoy)  future. There can also be other contributiongytarising for
and((rk*, o ) are equivalent to the equations foy(t)|? and instance from translational motion of the ator(igne gas can
ao(t)c(t)T that follow from Eq.(24b). be treated as frozen to a good approximation when the typi-
When the Lorentzian approximation is made in £47)  cal collision timer exceeds ~*, and certainlyr~* contrib-
or its analog foraZ, it is possible to obtain a closed set of Ut€s t07.) In this paper, we in effect add a damping term to

- z z . . the equations of Sec. Il, making the problem soluble again.
gzléztlﬁrz;?j((ﬁ'f f2?d3< Zg;rtsh;ts?/l:'ja;:]e,;is?r:t(jsic:rgsa?jrti?/ I?heThe effect ofy is to further smooth out and wash away the
Laplace transforms in Eq€34) and (37), the equation for oscillatory behavior of the unaveraged signal. For laygsl

traces of the oscillations are wiped out and the signal satu-
L(t)= 3 (1+=(of)) must be of the fourth order, and that (ates according to exp(\/ﬁ), where y,q is given by Eq.
for S(t)= 3 (1—=(op)) of fifth order. (32). The saturated linewidth is infinite, because hestate

If Eq. (56) were exact, it would correctly give the signal eventually decays for all values af. However, the signal at
in the limit N’<N, andn’(t) would be equal tc§(t),, of finite t varies significantly withA, indicating that the line-
Sec. Il if the values fory used in the two models were width has a minimum at intermediate times. For snidhe
assumed to be equal. In addition,(t) would reduce to the signal is always independent df, consistent with a line-
exactS(t) , of Sec. Il if y were taken to be zero. Since the Width proportional tot™*, as seen already in Fig. 2.
result forn’(t) is based on approximations that are certainly In Sec. IV we introduce an effective spin Hamiltonian to
not valid for N’<N, it is already comforting that, in this describe the resonating frozen gas for all values of the pa-
limit, it shows a general resemblance to the correct behaviorametersu/u’ and N/N’, and we discuss in particular the
We are currently working on better approximations to applycaseN~N’, which is relevant to the experiments carried out

to the spin-variable formalism. so far. The only simplification we make in this spin Hamil-
tonian is to neglect the potential responsible for the
V. DISCUSSION s’'p’-p's’ interaction. This coupling can easily be included,

although the resulting equations of motion contain more

The system we are studying can exhibit a wide range oferms and would be more difficult to handle; it is in fact
behaviors, depending on the values of the parametérs  small for the experiments of Refgl,3]. Other resonant sys-
andN/N’. At the same time, there are features that persistems can be described by similar spin Hamiltonians. The
(at least qualitativelythroughout the range of parameters. experiment of Mourachket al.[2], for example, consists of

In Sec. I, we determine the exact behavior of a frozeng pp-ss’ resonance in the presence sjf-ps and s’ p-ps’
system consisting of a sing state interacting resonantly flips. A spin-1 Hamiltonian therefore describes this system,
with a sea of states. That is to say, we treat exactly the limitwith the —1, 0, and 1 spin states corresponding to shp,
u<p' andN’<N. A singless’ pair produces, of course, a ands’ atomic states, respectively. In this case, there is only
signal with a sinusoidal behavior, and the same is true, lesgne set of spins and all spins are initially in the O state. The
obviously, for a singles’ interacting with a sea ofthat are  spin model we have discussed in this paper consists of two
not mutually interacting. The phase interference brought insets of spins, which complicates matters but at the same time
by averaging over configurations causes the signal from allows one to consider the limit in which one set is sparse.
sparse system df’ to take on the form shown in Fig. 1. There is practically no end to the variety of phenomena
Because the averaging does not completely wash out th@at this type of spin Hamiltonian can describe, combining
oscillations at small times, especially for nonzero values ofeatures from many branches of physics. Atomic physics,
the detuning, the resonance linewidth has the nonmonotoni&indom systems, spin systems and magnetic resonance, and
behavior seen in Fig. 2. The initial rise of the averaged signaiany-body theory are all represented. The equilibrium be-
is linear in time, even though the unaveraged signal is quahavior poses interesting problems of statistical mechanics,
dratic, and is given by/7vt/2, with v defined in Eq.(10).  but we are interested in the guantum dynamics, starting from
The linewidth at large times is approximately 4.610]. The  a prepared state. We have obtained and solved approximate
fact that v is sizably larger than the simple estimate dynamical equations for the cabe=N’, using the Lorentz-
nu' (N/Q) reflects quantitatively the fact that “close pairs” ian approximation as in Sec. Il to model teg-ps interac-
of atoms are more heavily weighted in the average. tion. Much more work can be done and is now in progress,

In Sec. Il we try to allow for any ratiqu/ ', but we still  and some of the results may change when better approxima-
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tions are introduced. In particular, in a better theory the line-angular dependence of the dipole-dipole interaction assum-
width is likely to depend on thep-ps interaction as well as ing that all of the dipoles point in the same direction, i.e., we
on thess'-pp’. Nevertheless, the qualitative behavior of thereplaceV, with
signal is common to all approximations we have tested so
far, and matches what is seen in the experiments that initially
motivated this work. The important features that we already _ MMz _
discussed are all there: the sharp initial rise, the slow satura- v(r.6)= r3 (3 cos6-1). (A1)
tion, and the dependence dn that is less pronounced at
small times and corresponds to a time-dependent linewidth.
The analog of Eq(8) now has a nontrivial angular part; it
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' VB

(A2)
APPENDIX: ANGULAR AVERAGING

In Sec. Il we averaged the quantigfﬁvz, where V2 The additional angular dependence changelsy a factor
=3N VZandV,=puu'/r}. In this appendix we include the 4/33.
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