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Resonant processes in a frozen gas

J. S. Frasier, V. Celli, and T. Blum
Department of Physics, University of Virginia, Charlottesville, Virginia 22901

~Received 4 August 1998!

We present a theory of resonant processes in a frozen gas of atoms interacting via dipole-dipole potentials
that vary asr 23, wherer is the interatomic separation. We supply an exact result for a single atom in a given
state interacting resonantly with a random gas of atoms in a different state. The time development of the
transition process is calculated both on and off resonance, and the linewidth with respect to detuning is
obtained as a function of timet. We introduce a random spin Hamiltonian to model a dense system of
resonators, and show how it reduces to the previous model in the limit of a sparse system. We derive
approximate equations for the average effective spin, and we use them to model the behavior seen in the
experiments of Anderson, Veale, and Gallagher@Phys. Rev. Lett.80, 249 ~1998!# and Lowell and co-workers
@Ph.D. dissertation, University of Virginia, 1998, and~unpublished!#. The approach to equilibrium is found to
be proportional to exp(2Ageqt), where the constantgeq is explicitly related to the system’s parameters.
@S1050-2947~99!10505-5#

PACS number~s!: 34.10.1x, 34.90.1q
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I. INTRODUCTION

Frozen gases are a new and in some ways ideal labora
in which to test our understanding of quantum theory in
complex system. With present technology one can man
late and detect electronic processes with an extraordin
selectivity and precision; furthermore, the translational te
perature of the gas can be lowered to the point where it
be ignored when discussing electronic processes. Frozen
dberg gases have the added advantages that their state
well understood, and many processes occur on a micro
ond time scale, easily allowing for time-resolved spectr
copy. Pioneering experiments on resonant processes in t
gases were carried out by Anderson, Veale, and Gallag
@1# and Mourachkoet al. @2#. The present work was moti
vated by the desire to understand those experiments an
subsequent work of Lowell and co-workers@3,4#, highlight-
ing the dynamic aspects of these resonant, many-particle
tems. The measurements are of mixtures of85Rb atoms ini-
tially prepared in the 23s and 33s states~henceforth to be
called thes ands8 states, respectively!. There are initiallyN
atoms in thes state andN8 atoms in thes8 state. The tran-
sition ss8→pp8 is monitored, wherep refers to the 24p state
andp8 refers to the 34p state, at and near resonance, wh
es81es5ep81ep . Some of the experimental features we wi
to understand are the rapid rise followed by a slow appro
to the saturation value of the signal and the width of the l
shape~in the detuningD5ep81ep2es82es) as a function of
time.

Each individual interaction leads to a coherent oscillat
behavior, but as we will see below, averaging thess8
→pp8 interaction over the random positions of the ato
greatly smooths out the signal. The effective ‘‘incoherenc
brought about by thesp→ps process~the ‘‘walking away’’
discussed by Mourachkoet al. @2#! completes the smoothin
out of the on-resonance signal, but has less effect on
off-resonance signal.~The s8p8→p8s8 process is also
present, but is smaller thansp→ps by a factor of 16 in this
case, and can therefore be neglected to the first approx
tion.!
PRA 591050-2947/99/59~6!/4358~10!/$15.00
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It was surmised in Ref.@1# that the linewidth must be o
the order of the average interaction energy. This interac
splits thess8-pp8 degeneracy and the subsequent migrat
of the p state to other atoms broadens the energy of
‘‘elementary excitation’’ into a band, as appropriate to
amorphous solid. Cluster calculations were performed to
lustrate this band formation@3#, but averaging over atom
positions was done by order-of-magnitude arguments o
Mourachkoet al. @2# pointed out, in connection with thei
experiments on a different system, that the ‘‘walking awa
of the p excitation from its original location should be re
garded as a diffusion process, and dynamical equations
the resonance transition in the presence of this diffusion w
written down@5#.

The present work builds on these earlier insights, but g
considerably further in the process of accurately averag
over atomic positions. It turns out that this averaging~effec-
tively, a phase averaging! itself produces an exp(2Ageqt)
dependence at large times, characteristic of a diffusive p
cess. A report of the newer experimental data by Low
et al. in comparison with the results of the present theory
being submitted separately@4#. In this paper we give a full
account of the general theory, and we discuss in detai
Sec. II a particular case that cleanly shows the effects
randomness and phase averaging. In this simple case
averaging process can be carried out exactly. For the pra
cally importantr 23 interaction potential, one can proceed
a mathematically elegant way and obtain closed formu
that can be evaluated by a computer package, or in s
cases by hand. It appears to be a fortunate coincidence
the r 23 potential accurately describes the dipole-dipole
teractions that are so prevalent in nature. Some aspec
this approach are easily extended to more general inte
tions; however, ther 23 dependence has special propert
which, when coupled with the assumption of a random d
tribution of atoms, lead to relatively simple results.

Although this work was stimulated by experiments on R
dberg atoms, it is generally applicable to resonances indu
by dipole-dipole interactions. These may be common
4358 ©1999 The American Physical Society
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highly excited gases and in molecular systems. Frozen, r
nant gases may even exist in interstellar clouds.

We develop the theory in three stages. First, in Sec. II,
discuss a singles8 atom interacting resonantly with a su
rounding gas ofs atoms, without any possibility for thes
excitation to ‘‘walk away’’ through ansp→ps process.
When the result is averaged over the positions of thes atoms,
it corresponds to a ‘‘sparse’’ system ofs8 atoms, i.e., a sys
tem whereN8!N. We do not know of an existing exper
ment to which this treatment applies, so this section can
viewed as a theoretical prediction of the outcome of a p
sible experiment. Our purpose here is also one of exposit
this example allows us to introduce in the simplest cont
some of the mathematical techniques used throughout
paper. In Sec. III, we complicate things somewhat by allo
ing thes state to decay away exponentially~or more gener-
ally, but explicit formulas are given for the exponential d
cay!. If the s state decays diffusively, our treatment here
related to that of Mourachkoet al. @2#, except for the intro-
duction of mathematically exact phase averaging. Here,
the treatment applies only to the case whereN8!N. Finally,
in Sec. IV we introduce an effective spin Hamiltonian whi
fully models the atomic system for all values ofN andN8, as
well as for any strength of the resonant process (ss8
→pp8) and of the mixing processes (sp→ps and s8p8
→p8s8). This system is relevant to the experiments of R
@1# and Lowell and co-workers@3,4#. We show its equiva-
lence to the previous results in the sparse limit (N8!N) and
discuss briefly the approximate solution in the non-spa
case. The results in this section are summarized elsew
@4#, but the derivation is presented here, as are additio
formulas. The limitations of the present theory and some
the many possible extensions are discussed briefly in Se

II. SPARSE ss8˜pp8 PROCESSES

We consider one atom, initially in the states8, in interac-
tion with a gas ofs atoms through anss8→pp8 process.
Like Mourachkoet al. @2#, we describe the system by th
equations

i ȧ05Da01(
k

Vkck , ~1a!

i ċk5Vka0 . ~1b!

Herea0(t) is the amplitude of the state in which the atom
the origin is in states8 and all other atoms are in states,
while ck(t) ~with k running from 1 toN) is the amplitude of
the state in which the atom at the origin is in statep8 and the
atom atr k is in statep, while all the others remain in states.
Vk is the interaction potential andD5ep81ep2es82es is the
detuning from resonance. We will assume thatVk is of the
dipole-dipole form

Vk5
mm8

r k
3

. ~2!

The atoms are sufficiently cold that during the time scale
interest they move only a very small fraction of their sep
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ration, and thereforeVk can be taken to be independent
time. As the temperature increases one approaches the o
site limit, where binary collisions control the resonant pr
cess@8#. There must of course be a gradual transition, wh
is beyond the scope of this paper.

The set of differential equations~1! can easily be solved
with the initial conditiona0(t50)51 andck(t50)50 for
all k, yielding

ck~ t !52
2iVke

2 iDt/2sin~AD214V 2 t/2!

AD214V 2
, ~3!

with

V 25 (
k51

N

Vk
2 . ~4!

Equation~1b! then givesa0(t). The experiment monitors an
optical transition from thep8 state ~or, equivalently, from
one of thep states!, which is proportional to

S~ t !512ua0~ t !u25(
k

uck~ t !u25
4V 2sin2~AD214V 2 t/2!

D214V 2
.

~5!

We see that the signalS(t) exhibits Rabi oscillations.
We apply this result to a system ofN8 atoms, initially in

states8, randomly dispersed among a much larger numbeN
of s atoms. In this sparse limit, the signal is proportional
N8 times the sample average ofS(t), and the sample averag
is equivalent to an ensemble average over the atomic p
tions r k that are hidden inV 2 @see Eq.~7! below#. In general,
averaging is more easily done on the Laplace transform
the signal, which in this case is

S̃~a!5E
0

`

e2at S~ t ! dt

5
1

a

2V 2

a21D214V 2

5
1

2a S 12
a21D2

a21D214V 2D . ~6!

Later in this paper, more complex models are solved dire
by Laplace~or Fourier! transforms; thus Eq.~6! is useful for
comparison with these more general results and approxi
tions.

A. Averaging over atom positions

To compute ensemble averages, we use the following
sult, valid in the limitN@1, for a random distribution of the
variablesr k :
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~e2bV 2
!av5

1

VNE d3r 1•••d3r N expF2b(
k51

N

V2~r k!G
5H 1

VE d3r exp@2bV2~r !#J N

5H 12
1

VE d3r @12e2bV2(r )#J N

→expH 2
N

VE d3r @12e2bV2(r )#J , ~7!

whereV is the volume of the gas in the trap. In particula
for the dipolar interactionV(r )5mm8/r 3, we have

E d3r @12e2b(mm8)2/r 6
#5

4p3/2

3
mm8Ab, ~8!

leading to

~e2bV 2
!av5e2vAb, ~9!

where

v5
4p3/2

3

N

V
m m8. ~10!

For the typical densities in the experiments of Ref.@1# and
Lowell and co-workers@3,4#, v is on the order of MHz.~In
the Appendix, we repeat the arguments above with an in
action that includes the angular dependence due to the
tive positions of the dipole moments and assumes that a
the dipole moments point in the same direction.! Sincev has
the units of an energy, it must be of ordermm8N/V on
dimensional grounds. It is still remarkable, however, that
~10! gives simply and exactly the quantityv that will enter in
all the averaged quantities in this section.

Using Eq.~9!, we can evaluate the average of any fun
tion F(V 2) provided that it can be represented as

F~V 2!5E
0

`

db F̃~b!e2bV 2
. ~11!

Further, we can use the identity

e2vAb5
1

Ap
E

0

`

dy expH 2
y2

4
2

v2b

y2 J , ~12!

so that
r-
la-
of

.

-

F~V 2!av5E
0

`

db F̃~b! e2vAb

5
1

Ap
E

0

`

dy e2y2/4E
0

`

db F̃~b!e2v2b/y2

5
1

Ap
E

0

`

dy e2y2/4FS v2

y2D . ~13!

This last set of relations implies that we can average a fu
tion F(V2) over the positions of the interacting dipoles~at-
oms in our case! by replacingV 2 with v2/y2 and integrating
over the kernel exp(2y2/4)/Ap. This trick is not always use-
ful, as it can lead to highly oscillatory integrals. It is, how
ever, convenient in determining the line shape in the satu
tion (t→`) limit ~as shown below!.

B. Averaged signal and line shape

Starting from Eq.~6! in the form

S̃~a!5
1

2a
2

a21D2

2a E
0

`

db e2b(a21D214V2), ~14!

and using Eq.~9!, we obtain

S̃~a!av5
1

2a
2

A2

2aE0

`

db e2bA222vAb

5
Ap

2

v
aA

expS v2

A2D erfcS v
AD , ~15!

whereA25a21D2. Expanding inv/A and performing the
inverse Laplace transform leads to

S~ t !av5
Ap

2
vt (

n50

`
~2vt !n

G~n12!GS n12

2 D
3 1F2S n11

2
;
n12

2
,
n13

2
;2

D2t2

4 D , ~16!

where nFm(a1 , . . . ,an ;b1 , . . . ,bm ;z) is a generalized hy-
pergeometric function. It is known that1F2 is related to the
integral of a power multiplied by a Bessel function. Expan
ing 1F2 yields the double series
ble
S~ t !av5
Ap

2
vt (

n50

`

(
m50

`
~21!n1mvnD2mtn12m

4mn!m!GS n12m12

2 D ~n12m11!

, ~17!

which can also be obtained directly by expanding Eq.~15! in 1/a and then taking the inverse Laplace transform. The dou
series can be rearranged to obtain the following expansion in the detuning:

S~ t !av5Avt

2 E0

` dp

Ap
e2p2

(
m50

`
1

m! S 2
D2pt

2v D m

J2m11~A8vpt!. ~18!



c

e

s

a

rs

-
the

giv-

is
e

d
nc

illa-

PRA 59 4361RESONANT PROCESSES IN A FROZEN GAS
The first term in this expansion, the on-resonance signal,
be written as

S~ t !avuD505FAp

2
vt 0F2S 1,

3

2
;
v2t2

4 D
1

1

2
2

1

2 0F2S 1

2
,
1

2
;
v2t2

4 D G , ~19!

which can also be obtained by settingD equal to zero in Eq.
~16! and summing the resulting series. Plots ofS(t)av for
several values ofD are shown in Fig. 1. Notice that th
initial slope of the signal is independent ofD. This feature
translates into resonance widths that vary as 1/t for smallt —
the so-called transform broadening discussed by Thom
and co-workers@6,7#. With v on the order of MHz, this
initial rise occurs in a fraction of ams. Another point of
interest is that the averaging is much more effective
smoothing out the oscillations forD50 than it is forDÞ0.

We can construct a measure of the width from the fi
two terms in theD expansion, Eq.~18!. If

S~ t !av5S0~ t !1D2S1~ t !1O~D4!, ~20!

and we define

FIG. 1. Averaged signalS(t)av for D/v50, 1, and 2~the upper,
middle, and lower curves, respectively! calculated from Eq.~17! for
the sparse limit. Thess8-pp8 process is averaged, thesp-ps pro-
cess neglected. The Rabi oscillations are not completely washe
by the averaging process and are more pronounced off resona
an

on

t

t

w5A2
S0~ t !

S1~ t !
, ~21!

then 2w would be the full width at half maximum~FWHM!
if the line shape were Lorentzian. The quantityw/v is plot-
ted in Fig. 2. For smallvt, we explicitly havew5A12/t.
While the 1/t behavior follows from the transform broaden
ing argument, or even simply from dimensional analysis,
coefficientA12 is a prediction of the detailed theory.

The line shape at saturation (t→`) can be obtained using
the relation in Eq.~13!, which yields

S~ t !av5
1

Ap
E

0

`

dy e2y2
F12cosSAD21

v2

y2
t D G

11
D2

v2
y2

.

~22!

For large times the cosine term above averages to zero,
ing

S~ t→`!av5
Ap

2

v
D

expS v2

D2D erfcS v
D D , ~23!

which can also be extracted from the smalla behavior of Eq.
~15!. This line shape is plotted in Fig. 3. The FWHM
approximately 4.6v. Also plotted is a Lorentzian line shap

out
e.

FIG. 2. ‘‘Width’’ vs time, as given by Eq.~21!, shows a dip
which is associated with the stronger and higher frequency osc
tions seen at larger values ofD, as shown in Fig. 1.
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with the same height and FWHM. Notice that this line sha
is sharper than the Lorentzian for smallD, and falls off more
slowly for largeD.

III. SPARSE ss8˜pp8 IN A BATH OF sp̃ ps

We again consider one atom, initially in states8, in inter-
action with a gas ofs atoms via thess8→pp8 process, but
we now allow forsp→ps processes by modifying Eqs.~1!
to

i ȧ05Da01(
k

Vkck , ~24a!

i ċk5Vka01(
l

Uklcl ~24b!

where Ukl5m2/r kl
3 , and the other symbols have the sam

meaning as in Eqs.~1!. Although Eqs.~24! are exact, they
are difficult to solve exactly. We therefore introduce t
equation

i ċk5Vka02 igck ~25!

in place of Eq.~24b!, whereg is an effective inverse life-
time. In a crude way, the2 igck term in Eq.~25! describes
the ‘‘walking away’’ of thep states from the neighborhoo
of the resonating atom at the origin. One can see from
~24b! that the model of Sec. II is recovered in the limitm
!m8.

FIG. 3. Saturation (t→`) line shape@Eq. ~23!#. It is not a
Lorentzian but a Lorentzian averaged as in Eq.~22!. The dashed
line is a Lorentzian with the same height and FWHM, drawn
comparison.
e

q.

When Eq.~1b! of the last section is replaced with Eq
~25!, the solution of the new system can be obtained
replacingD with D1 ig in Eq. ~3! and in the corresponding
equation fora0(t). Then

L~ t ![(
k51

N

uck~ t !u25
2V 2e2gt@cosh~yt!2cos~xt!#

x21y2
,

~26!

wherex andy are real numbers that satisfy

~x1 iy !25~D1 ig!214V 2. ~27!

At resonance, we have

~x,y!5H ~A4V 22g2,0! if g,2V
~0,Ag224V 2! if g.2V.

~28!

Note thatL(t) decays more slowly in the latter case. Hen
the large-t limit of L(t)av will be dominated by smallV. This
remains true off resonance as well. The small-V expansion
for y is

y5g2
2V 2g

D21g2
. ~29!

Thus we can conclude that, for the leading behavior at la
times,

lim
t→`

L~ t !}expF2
2V 2g

D21g2
tG . ~30!

Using Eq.~9!, we obtain an asymptotic behavior of the a
erage

lim
t→`

L~ t !av}exp~2Ageqt !, ~31!

where

geq5
2v2g

D21g2
. ~32!

Let us now examine the full time dependence. We be
with the Laplace transform ofL(t) which is

L̃~a!5
2sV 2

s41~x22y2!s22x2y2
, ~33!

wheres5a1g. Substitutingx andy from Eq. ~27! gives

L̃~a!5
2sV 2

s41~D22g214V 2!s22D2g2
. ~34!

The signal is still proportional toN8S(t), with S(t)51
2ua0(t)u2. It is no longer true that 12ua0u25(kucku2, be-
cause(kucku2 is not the total probability of finding ap state,
but only the probability of finding ap state that has no
‘‘walked away.’’ However, the relation

r
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d

dt S ua0u21(
k

ucku2D 522g(
k

ucku2, ~35!

with the usual initial conditions, enables us to obtain

S~ t !5L~ t !12gE
0

t

L~ t8! dt8 ~36!

and

S̃~a!5S 11
2g

a D L̃~a!. ~37!

For g.0, S(t) rises from 0 to 1@or more accurately to (1
1N8/N)21, as seen in Sec. IV#, while for g50 it saturates
at 2V 2/(D214V 2). What happens for smallg is a quick rise
~on the average time scale ofv21) to 2V 2/(D214V 2), fol-
lowed by a slow rise to 1.

Averaging these equations is done as in Sec. II. For
stance, averagingL(a) yields

L̃~a!av5
Ap

2

v
sB

expS v2

B2D erfcS v
BD , ~38!

where

B25~s21D2!~s22g2!/s2, ~39!

which is the analog of Eq.~15!. The inverse Laplace trans
form of this expression is rather complicated, but it simp
fies immensely at resonance, becoming

L~ t !av5
Ap

2
v (

n50

`
~21!n

n! S 2v2

g D n/2

e2gtE
0

t

dt tn/2I n/2~gt!.

~40!

This result can also be expressed in terms of general
hypergeometrics, and in that form appears similar to
~16!. One can use the asymptotic behavior of the Bes
function in Eq. ~40! to confirm the large-t dependence ar
gued earlier in Eq.~31!. An expansion in inverse powers o
a, leading to an expression similar to Eq.~17!, is easily
obtained by computer. Figure 4 shows the average sig
S(t)av for g5v, andD/v having the values 0,1, and 2. On
can see that the approach to one becomes slower as th
tuning is increased, as predicted by Eqs.~31! and~32!. This
behavior is the same as that found by Mourachkoet al. @2#
under the assumption that the time development of theck is
governed by a diffusion equation. We see that in the pres
approach it arises simply from phase averaging. The re
for the on-resonance signal is shown in Fig. 5. As one wo
expect, for small values ofg the small-t features of Fig. 5
resemble those in Fig. 1 of Sec. II, where thesp→ps pro-
cess is neglected entirely.

IV. INTERACTING RESONANT PROCESS

We now considerN atoms at positionsr k which are ini-
tially in state s and N8 atoms at positionsr k8 which are
initially in states8. We represent thes andp states atr k with
the down and up states of an effective spinsk , and similarly
-

-

ed
.

el

al

de-

nt
lt

d

represent thes8 and p8 states atr k8 with a spinsk8 . The
Hamiltonian is then

(
k

@«s1~«p2«s!sk
1sk

2#1(
k8

@«s81~«p82«s8!sk8
1 sk8

2
#

1(
kk8

Vkk8@sk
1sk8

1
1sk

2sk8
2

#1 (
k,lÞk

Uklsk
1s l

2 , ~41!

where

Vkk85
mm8

ur k2r k8u
3

and Ukl5
m2

ur k2r l u3
. ~42!

For the experiments under consideration,m'4m8, and the
sp-ps coupling m2, which leads to ‘‘spin diffusion,’’ is
larger than thess8-pp8 couplingmm8, which is responsible
for the resonant energy transfer.

The strategy is to write down the evolution equations
the spin variables, take the expectation values over the in
stateu i & ~which consists of all spins down!, discard the ex-
pectation values of quantities that fluctuate incoheren
solve the resulting equations, and finally average over
atomic coordinatesr k and r k8 . The experimental signal is
proportional to the number ofp8 states,(k8nk8 , where

nk85
1
2 ~11^sk8

z &!. ~43!

FIG. 4. Averaged signalS(t)av for g5v, andD/v50, 1, and 2
~the upper, middle, and lower curves, respectively! calculated from

S̃(a)av5@11(2g/a)#L̃(a)av and Eq.~38!. The approach to satura
tion goes like exp(2Ageqt), with geq given by Eq.~32!.
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It should be noted thatu i & is not the ground state, nor doe
the system relax to the ground state, because it is essen
decoupled from other degrees of freedom for the duration
the experiment.

We start with basic equations of motion such as

i
d

dt
sk8

1
5Dsk8

1
1sk8

z (
k

Vk8ksk
2 , ~44!

i
d

dt
sk

15sk
z(

k8
Vkk8sk8

2
1sk

z(
lÞk

Ukls l
1 , ~45!

i
d

dt
sk8

z
52(

k
Vk8k~sk

1sk8
1

2sk
2sk8

2
!, ~46!

whereD is the detuning from resonance@9#, and obtain

1

2

d2

dt2
sk8

z
52(

kl8
Vk8kVkl8sk

z~sk8
2 s l 8

1
1sk8

1 s l 8
2

!

2(
kl

Vk8kVlk8sk8
z

~sk
2s l

11sk
1s l

2!

2 (
k,lÞk

Vk8kUklsk
z~sk8

1 s l
11sk8

2 s l
2!

2D(
k

Vk8k~sk8
1 sk

11sk8
2 sk

2!. ~47!

FIG. 5. S(t)av, as in Fig. 4, calculated at resonance (D50), for
inverse lifetimesg/v51, 0.1, and 0.02~the upper, middle, and
lower curves, respectively!. For the largest value ofg the oscilla-
tion is completely gone.
lly
f

We reduce the expectation value of this equation as follo
In the first line, we assume that^sk

z(sk8
2 s l 8

1
1sk8

1 s l 8
2)& is

negligible unlessk85 l 8, in which case it reduces tôsk
z&.

Similarly, ^sk8
z (sk

2s l
11sk

1s l
2)& is replaced bŷ sk8

z &dkl .
The third line contains only incoherent terms, which we tre
by assuming that they lead to a Lorentzian broadening
letting

sk
z(
lÞk

Ukls l
1→ igsk

1 ~48!

when computing these terms. With this crude approximat
and Eq.~46!, we obtain

(
kl

Vk8kUkl^sk
z~sk8

1 s l
11sk8

2 s l
2!&5

g

2

d

dt
^sk8

z &. ~49!

Collecting results, we obtain

1

2

d2

dt2
^sk8

z &52(
k

Vk8kVkk8~^sk
z&1^sk8

z &!

2
g

2

d

dt
^sk8

z &2Dgk8 , ~50!

where

gk8~ t !5(
k

Vk8k^sk8
1 sk

11sk8
2 sk

2&. ~51!

Using arguments similar to those used to derive Eq.~50!, we
obtain the approximate equation

dgk8
dt

5D
dnk8
dt

2g~gk82ḡ!, ~52!

whereḡ5(1/N8)(k8gk8 , and thegḡ term has been put in by
hand to preserve conservation. These equations imply

dḡ

dt
5D

dn8

dt
, ~53!

where

n85
1

N8
(
k8

nk8 , ~54!

with the initial conditiongk8(0)50.
At this point, it is more convenient to work with thep8

occupationnk8 , defined in Eq.~43!, and with the corre-
spondingp occupation,nk . For comparison with experimen
we will need the sample average, which corresponds toS(t)
of Secs. II and III. Taking Laplace transforms of Eqs.~50!
and ~52!, we obtain
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S a212(
k

Vkk8
2

1ga1
aD2

a1g D ñk8

5
2

a (
k

Vkk8
2

22(
k

Vkk8
2 ñk2D2

g

a1g
ñ8,

~55!

where the tildes denote Laplace transforms, andñ8(a) is the
sample average ofñk8(a).

We can obtain a similar equation forñk , and we are then
left with coupled equations which we are not able to sol
However, ifN'N8 we can simplify the problem by assum
ing that the strongsp-ps coupling acts to randomize thesk
spins, while the resonantss8-pp8 processes are entirely co
herent. Accordingly, in Eq.~55! we replaceñk with its
sample averageñ and obtain an equation forñk8 alone by
using the exact relationNn5N8n8, which follows from the
fact thatp andp8 states are created in pairs by theVkk8 term
in Eq. ~41!. We solve forñk8 and average over a rando
distribution of atoms, replacing the sample avera
(1/N8)(k8nk8 with an ensemble average, and obtain

ñ85
~1/a!~12C2F̃av!

11
N8

N
2S N8

N
C22

gD2

a1g D F̃av

, ~56!

where

C25a21ag1
aD2

a1g
, ~57!

and F̃av is the ensemble average of

F̃5
1

C212(
k

Vk
2

. ~58!

For N5N8, Eq. ~56! simplifies to

ñ85
~1/a!~12C2F̃av!

22S C22
gD2

a1g D F̃av

. ~59!

F̃av is computed in the same way as the averages ofS̃ in
Sec. II andL̃ in Sec. III. The analog of Eq.~15! is

C2F̃~a!av512Ap

2

v
C

expS v2

2C2D erfcS v

A2C
D , ~60!

with v given by Eq.~10! and C by Eq. ~57!. One way to
computen8(t) is to expandñ8(a) @Eq. ~56!#, in inverse
powers ofa. This gives the analog of Eq.~17!, but we have
not found a simple expression for the coefficients.

Figure 6 shows the signal as calculated in Eq.~59! for g
5v, and D/v50, 1, and 2. We see that the on-resonan
signal is devoid of any oscillations. Off-resonance, the os
lations are not completely washed out by the phase ave
.

e

e
l-
g-

ing, and some nonmonotonicity is evident. Consequently,
dip in the width seen in Fig. 2 is also present in this calc
lation, providedg is not too large.

Figure 6 differs from the corresponding Fig. 4 of Sec.
in one important respect: the on-resonance signal saturat
1
2 rather than to 1. For general values ofN andN8, Eq. ~56!
predicts that ast→` ~i.e., as a→0) N8n8 approaches
NN8/(N1N8), as expected from simple kinetics for the tw
body reactionss8→pp8. As in the previous sections, th
energy scale is set byv, which according to Eq.~10! has the
value 5.72mm8N/V. As discussed in Ref.@1#, this quantity
is of the correct order of magnitude to account for the da

Reduction to the sparse limit

We now show explicitly how the general spin-variab
formalism relates to the coefficientsa0 andck of Secs. II and
III when there is only a single atom that can be in thes8, p8
pair of states~i.e., when only a single spin variable of th
typesk8 is present.! The key to the correspondence is that
this case the initial stateu i & ~which consists of all spins
down! evolves to

ut&5S a0~ t !1(
q

cq~ t !sk8
1 sq

1D u i & ~61!

at time t, where the spin variables now denote tim
independent~Schrödinger! operators. With the understandin
that r k850, we have

FIG. 6. Averaged signaln8(t) for N5N8, g5v, andD/v50,
1, and 2 ~the upper, middle, and lower curves, respectively!, as
calculated from Eq.~59!. While the oscillations are ‘‘damped out’
for D50, they remain forD/v51 and 2.
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^sk8
z &[^tusk8

z ut&5122ua0~ t !u2, ~62!

^sk
z&52uck~ t !u221, ~63!

^sk8
1 sk

1&5a0~ t !ck
†~ t !. ~64!

It is then clear that the expectation value of Eq.~46! is
equivalent to the following, which is itself a consequence
Eqs.~1!:

d

dt
ua0~ t !u25(

k
Vk~a0ck

†2a0
†ck!, ~65!

whereVk is short forVk8k . Similarly, the equations for̂sk
z&

and^sk8
1 sk

1& are equivalent to the equations foruck(t)u2 and
a0(t)ck(t)

† that follow from Eq.~24b!.
When the Lorentzian approximation is made in Eq.~47!

or its analog forsk
z , it is possible to obtain a closed set

equations for̂ sk
z& and^sk8

z & that give the results reported i
Secs. II and III for a sparse system. As indicated by
Laplace transforms in Eqs.~34! and ~37!, the equation for

L(t)5 1
2 (11(k^sk

z&) must be of the fourth order, and tha

for S(t)5 1
2 (12(k^sk

z&) of fifth order.
If Eq. ~56! were exact, it would correctly give the sign

in the limit N8!N, and n8(t) would be equal toS(t)av of
Sec. III if the values forg used in the two models wer
assumed to be equal. In addition,n8(t) would reduce to the
exactS(t)av of Sec. II if g were taken to be zero. Since th
result forn8(t) is based on approximations that are certai
not valid for N8!N, it is already comforting that, in this
limit, it shows a general resemblance to the correct behav
We are currently working on better approximations to ap
to the spin-variable formalism.

V. DISCUSSION

The system we are studying can exhibit a wide range
behaviors, depending on the values of the parametersm/m8
and N/N8. At the same time, there are features that per
~at least qualitatively! throughout the range of parameters

In Sec. II, we determine the exact behavior of a froz
system consisting of a singles8 state interacting resonantl
with a sea ofs states. That is to say, we treat exactly the lim
m!m8 andN8!N. A singless8 pair produces, of course,
signal with a sinusoidal behavior, and the same is true,
obviously, for a singles8 interacting with a sea ofs that are
not mutually interacting. The phase interference brough
by averaging over configurations causes the signal from
sparse system ofs8 to take on the form shown in Fig. 1
Because the averaging does not completely wash out
oscillations at small times, especially for nonzero values
the detuning, the resonance linewidth has the nonmonot
behavior seen in Fig. 2. The initial rise of the averaged sig
is linear in time, even though the unaveraged signal is q
dratic, and is given byApvt/2, with v defined in Eq.~10!.
The linewidth at large times is approximately 4.6v @10#. The
fact that v is sizably larger than the simple estima
mm8(N/V) reflects quantitatively the fact that ‘‘close pairs
of atoms are more heavily weighted in the average.

In Sec. III we try to allow for any ratiom/m8, but we still
f

e

r.
y

f

st

n

t

ss

n
a

he
f
ic

al
a-

keepN8!N: physically, we consider a sparse distribution
~initially ! s8 states in a gas wheresp-ps flips take place at a
non-negligible rate. The first question we should answer
after thess82pp8 transition, does thep state ‘‘walk away’’
to infinity or remain localized? In this paper, we have a
sumed that localization does not take place, or, if it does
important only in the very sparse limit where the localizati
length is smaller than (V/N)1/3. Leaving much room for fu-
ture work, we have simply introduced a lifetimeg21 for the
p state to ‘‘stick around.’’ The spectral function for th
propagatingsp-ps flip is then simply a Lorentzian. We hav
obtained tentative estimates ofg when it is entirely due to
thesp-ps flips, and we plan to report these results in the n
future. There can also be other contributions tog, arising for
instance from translational motion of the atoms.~The gas can
be treated as frozen to a good approximation when the t
cal collision timet exceedsv21, and certainlyt21 contrib-
utes tog.! In this paper, we in effect add a damping term
the equations of Sec. II, making the problem soluble aga
The effect ofg is to further smooth out and wash away th
oscillatory behavior of the unaveraged signal. For largeg all
traces of the oscillations are wiped out and the signal s
rates according to exp(2Ageqt), wheregeq is given by Eq.
~32!. The saturated linewidth is infinite, because thes8 state
eventually decays for all values ofD. However, the signal a
finite t varies significantly withD, indicating that the line-
width has a minimum at intermediate times. For smallt the
signal is always independent ofD, consistent with a line-
width proportional tot21, as seen already in Fig. 2.

In Sec. IV we introduce an effective spin Hamiltonian
describe the resonating frozen gas for all values of the
rametersm/m8 and N/N8, and we discuss in particular th
caseN'N8, which is relevant to the experiments carried o
so far. The only simplification we make in this spin Ham
tonian is to neglect the potential responsible for t
s8p8-p8s8 interaction. This coupling can easily be include
although the resulting equations of motion contain mo
terms and would be more difficult to handle; it is in fa
small for the experiments of Refs.@1,3#. Other resonant sys
tems can be described by similar spin Hamiltonians. T
experiment of Mourachkoet al. @2#, for example, consists o
a pp-ss8 resonance in the presence ofsp-ps and s8p-ps8
flips. A spin-1 Hamiltonian therefore describes this syste
with the 21, 0, and 1 spin states corresponding to thes, p,
ands8 atomic states, respectively. In this case, there is o
one set of spins and all spins are initially in the 0 state. T
spin model we have discussed in this paper consists of
sets of spins, which complicates matters but at the same
allows one to consider the limit in which one set is spars

There is practically no end to the variety of phenome
that this type of spin Hamiltonian can describe, combini
features from many branches of physics. Atomic phys
random systems, spin systems and magnetic resonance
many-body theory are all represented. The equilibrium
havior poses interesting problems of statistical mechan
but we are interested in the quantum dynamics, starting fr
a prepared state. We have obtained and solved approxim
dynamical equations for the caseN.N8, using the Lorentz-
ian approximation as in Sec. III to model thesp-ps interac-
tion. Much more work can be done and is now in progre
and some of the results may change when better approx
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tions are introduced. In particular, in a better theory the li
width is likely to depend on thesp-ps interaction as well as
on thess8-pp8. Nevertheless, the qualitative behavior of t
signal is common to all approximations we have tested
far, and matches what is seen in the experiments that initi
motivated this work. The important features that we alrea
discussed are all there: the sharp initial rise, the slow sat
tion, and the dependence onD that is less pronounced a
small times and corresponds to a time-dependent linewid

ACKNOWLEDGMENTS

We wish to thank T. Gallagher and J. Lowell for man
useful discussions. T.B. acknowledges the support of the
tional Science Foundation under Grant No. DMR931247

APPENDIX: ANGULAR AVERAGING

In Sec. II we averaged the quantitye2bV 2
, where V 2

5(k51
N Vk

2 andVk5mm8/r k
3 . In this appendix we include the
e

s

8

.

e

-

o
ly
y
a-

.

a-

angular dependence of the dipole-dipole interaction ass
ing that all of the dipoles point in the same direction, i.e.,
replaceVk with

V~r ,u!52
m1m2

r 3
~3 cos2u21!. ~A1!

The analog of Eq.~8! now has a nontrivial angular part;
becomes

2pE
0

`

r 2drE
2p/2

p/2

sinu du@12e2bV2(r ,u)#5
16p3/2

9A3
mm8Ab.

~A2!

The additional angular dependence changesv by a factor
4/3A3.
a,

ys.
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