Physics 752 Final Exam
May 2, 2003

1. (a) Using a Gaussian trial wave function, \(\psi(x) = Ce^{-ax^2} \) find an approximate ground state energy for a particle of mass \(m \) in a V-shaped attractive potential, \(V(x) = V_0|x| \).

(b) Describe how you would find an approximate energy for the first excited state by modifying the Gaussian wavefunction appropriately (you don’t have to carry it through).

2. A one-dimensional simple harmonic oscillator is placed in a uniform external field,

\[
H = H^0 + H^1 = \frac{p^2}{2m} + \frac{1}{2} m \omega^2 x^2 - qfx.
\]

Using perturbation theory in \(H^1 \), and denoting the \(n \)th state by \(|n> \), find:

(a) the first-order shift in energy for the \(n \)th state,

(b) the first-order change in the wavefunction of the \(n \)th state (in terms of contributions from other states),

(c) the second-order shift in the energy of the \(n \)th state.

(d) Check your results by solving the problem exactly.

3. (a) Write down Fermi’s Golden Rule for a quantum transition rate.

(b) For a photon emitted (in an atomic transition) into a solid angle \(d\Omega \), show that the density of states as a function of energy is \(\frac{V \omega^2 d\Omega}{(2\pi)^3 \hbar c^3} \), with normalization volume \(V \).

(c) Using the quantized form of the vector potential,

\[
A(x,t) = (1/\sqrt{V}) \sum_k \sum_\alpha e^{i(k_x x - \omega t)} [a_{k,\alpha}^* (t)e^{i\epsilon_\alpha} + a_{k,\alpha} (t)e^{-i\epsilon_\alpha}]
\]

write down an expression for the spontaneous transition rate \(2p \) to \(1s \) in hydrogen, using the \(A.p \) form for the interaction.

(d) Justify (briefly) dropping the \(e^{i k_x x} \) term.
(e) Transform your matrix element so that it is a function of the operator \(x \) rather than \(p \).

(f) What is the order of magnitude of the expectation value of \(|x_{BA}|^2 \) in this transition in terms of the Bohr radius and the electron charge?

(g) Write down a complete expression for the spontaneous transition rate in terms of \(|x_{BA}|^2 \). If you can’t do the angle integrals, make a guess.

(h) How is the spontaneous transition rate related to the inverse transition rate for a hydrogen atom in the ground state in a macroscopic electromagnetic field of the appropriate frequency?

4. For scattering of a plane wave from a potential, the wave function is taken to be:

\[
\psi_k = e^{ikr} + \psi_{sc}, \quad \text{where } \psi_{sc} \to f(\theta, \phi, k) \frac{e^{ish}}{r} \text{ at large } r.
\]

If \(V(r) = V(r) \), there is no \(\phi \) dependence, and the partial wave amplitudes \(a_l(k) \) are defined by:

\[
f(\theta, k) = \sum_l (2l+1)a_l(k)P_l.
\]

The incident plane wave can be written:

\[
e^{ikz} = e^{ikr \cos \theta} = \sum_l i^l (2l+1) j_l(kr) P_l(\cos \theta)
\]

where for large \(r \)

\[
j_l(kr) \to \frac{\sin(kr - l\pi/2)}{kr}.
\]

In the presence of a (finite range) potential, this asymptotic dependence becomes:

\[
R_l(r) \to \frac{A_l \sin[kr - l\pi/2 + \delta_l(k)]}{r}
\]

(a) From the formulas above, derive an expression for \(a_l(k) \) in terms of \(k \) and \(\delta_l \).

(b) What is the total cross-section in terms of \(f(\theta, k) \)? From that result, find it in terms of \(k \) and the \(\delta_l \)’s.

(c) Derive the connection between the total cross-section and the forward scattering, and give a brief physical explanation.

(d) For an arbitrary potential equal to zero beyond \(r = a \), is there a limit to the size of the \(l = 0 \) cross-section as \(k \) goes to zero? Explain your answer.