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Using Dimensions 
Michael Fowler, UVa 
 
Some of the most interesting results of hydrodynamics, such as the sixteen-fold increase in flow 
down a pipe on doubling the radius, can actually be found without doing any calculations, just 
from dimensional considerations. 
 
We symbolize the “dimensions” mass, length and time by M, L, T.  We then write the dimensions 
of other physical quantities in terms of these.  For example, velocity has dimensions 1LT − , and 
acceleration  2.LT −

 
We shall use square brackets [] to denote the dimensions of a quantity, for example, for velocity, 
we write [ ] 1.v LT −=   Force must have the same dimensions as mass times acceleration, so        

[ ] 2.F MLT −=   This “dimensional” notation does not depend on the units we use to measure 
mass, length and time.   
 

All equations in physics must have the same dimensions on both sides. 
 
We can see from the equation defining the coefficient of viscosity ,η   0/F A v d/η= , (the left 
hand side is force per unit area, the right hand v0/d is the velocity gradient) that 
  

[ ] [ ] [ ]( ) [ ] [ ] ( )2 2 1 1 1/ / / /F A d v MLT L L LT ML Tη .− − −= ⋅ = ⋅ = −  
 
How can thinking dimensionally help us find the flow rate I through a pipe?  Well, the flow 
itself, say in cubic meters per second, has dimensions [ ] 3 1.I M T −=   What can this flow depend 
on?  
 
The physics of the problem is that the pressure difference PΔ  between the ends of the pipe of 
length L is doing work overcoming the viscous force. The only parameters determining the flow 
are therefore: the pressure gradient, /P LΔ , the viscosity ,η  and the radius of pipe cross section 
a.  Note here that we are assuming the flow is steady—no acceleration—so the mass, or more 
precisely density, of the fluid plays no part.  Of course, if the flow is downward, the density has 
an indirect role in that the weight of the fluid generates the pressure gradient, but we’ve already 
included the pressure as a parameter.  
 
Therefore,  

( )Flow / , ,I f P L aη= Δ  
 
where f is some function we don’t know, but we do know that the two sides of this equation must 
match dimensionally, so f must have the same dimensions as I, that is,  3 1.L T −
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Now , a pressure, has dimensions PΔ [ ] [ ] 2 2/F A MLT L− −=  so /P LΔ  has dimensions 2 2.ML T− −    
 
The other variables in f have dimensions [ ] 1 1ML Tη − −=  (from above) and [a] = L.   
 
The game is to put these three variables (or powers of them) together to give a function f having 
the dimensions of flow, that is, , otherwise the above equation must be invalid.   3 1L T −

 
The first thing to notice is that there is no M  term in flow, and none in a either, so  and /P LΔ η  
must appear in the equation in such a way that their M terms cancel, that is, one divides the other.   
 
We know of course that increased pressure increases the flow, so they must appear in the 
combination /P LηΔ .  This gets rid of M.  The next task is to put this combination, which has 
itself dimensions 2 2 1 1 1 1/ ,MLT L ML T L T− − − − − −=  together with [a] = L, to get a quantity with the 
dimensions of flow,   The unique choice is to multiply3 1.L T − /P LηΔ by a4. 
 
We therefore conclude that the flow rate through a circular pipe must be given by: 
 

( ) 4/ .I C P L aη= Δ  
 
This is certainly much easier than solving the differential equation and integrating to find the 
flow rate!  The catch is the unknown constant C in the equation—we can’t find that without 
doing the hard work. However, we have established from this dimensional argument that the 
flow rate increases by a factor of 16 when the radius is doubled. 
 
It should be noted that this conclusion does depend on the validity of the assumptions made—in 
particular, that the flow is uniform and in straight streamlines.  At sufficiently high pressure, the 
flow becomes turbulent.  When this happens, the pressure causes the fluid to bounce around 
inside the pipe, and the flow pattern will then depend also on the density of the fluid, which was 
irrelevant for the slow laminar flow, and the reasoning above will be invalid.   
 
Exercise:  derive the depth dependence of the steady flow of a wide river under gravity.       
(Note: The appropriate flow rate is cubic meters per second per meter of width of the river.) 
 
So dimensional analysis cannot give overall dimensionless constants, but can predict how flow 
will change when a physical parameter, such as the pressure or the size of the pipe, is altered.  
We’ve shown above how it rather easily gives a nonobvious result, the a4 dependence of flow on 
radius, which we found earlier with a good deal of work.  But as we shall see, dimensional 
analysis can also illuminate the essential physics of flow problems where exact mathematical 
analysis is far more difficult, such as Stokes’ Law in the next lecture, and help us understand 
how the nature of fluid flow changes at high speeds. 
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