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Discovering Gravity 
Terrestrial Gravity: Galileo Analyzes a Cannonball Trajectory 
From the earliest times, gravity meant the tendency of most bodies to fall to earth.  In contrast, 
things that leaped upwards, like flames of fire, were said to have “levity”.  Aristotle was the first 
writer to attempt a quantitative description of falling motion: he wrote that an object fell at a 
constant speed, attained shortly after being released, and heavier things fell faster in proportion 
to their mass. Of course this is nonsense, but in his defense, falling motion is pretty fast—it’s 
hard to see the speed variation when you drop something to the ground.  Aristotle most likely 
observed the slower motion of things falling through water, where buoyancy and fluid resistance 
dominate, and assumed that to be a slowed-down version of falling through air—which it isn’t. 
 
Galileo was the first to get it right.  (True, others had improved on Aristotle, but Galileo was the 
first to get the big picture.)  He realized that a falling body picked up speed at a constant rate—
in other words, it had constant acceleration (as he termed it, the word means “addition of speed” 
in Italian).  He also made the crucial observation that, if air resistance and buoyancy can be 
neglected, all bodies fall with the same acceleration, bodies of different weights dropped 
together reach the ground at the same time.  This was a revolutionary idea—as was his assertion 
that it should be checked by experiment rather than by the traditional method of trying to 
decipher what ancient authorities might have meant. 
  
Galileo also noted that if a ball rolls without interference on a smooth horizontal surface, and 
friction and air resistance can be neglected, it will move with constant speed in a fixed 
direction—in modern language, its velocity remains constant.   
 
He considered the motion of an object when not subject to interference as its “natural” motion.  
Using his terminology, then, natural horizontal motion is motion at constant velocity, and 
natural vertical motion is falling at constant acceleration.  
 
But he didn’t stop there—he took an important further step, which made him the first in history 
to derive useful quantitative results about motion, useful that is to his boss, a duke with military 
interests.  The crucial step was the realization that for a cannonball in flight, the horizontal and 
vertical motions can be analyzed independently.  Here’s his picture of the path of a horizontally 
fired cannonball: 
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The vertical drop of the cannonball at the end of successive seconds, the lengths of the vertical 
lines ci, df, eh are the same vertical distances fallen by something dropped from rest.  If you drop 
a cannonball over a cliff it will fall 5 meters in the first second, if you fire it exactly horizontally 
at 100 meters per second, it will still fall 5 meters below a horizontal line in the first second.  
Meanwhile, its horizontal motion will be at a steady speed (again neglecting air resistance), it 
will go 100 meters in the first second, another 100 meters in the next second, and so on.  
Vertically, it falls 5 meters in the first second, 20 meters total in two seconds, then 45 and so on.   
 
Galileo drew the graph above of the cannonball’s position as a function of time, and proved the 
curve was parabolic. He went on to work out the range for given muzzle velocity and any angle 
of firing, much to the gratification of his employer. 

Moving Up:  Newton Puts the Cannon on a Very High Mountain 
Newton asked the question:  what if we put the cannon on a really high (imaginary, of course!) 
mountain above the atmosphere and fired the cannon really fast?  The cannonball would still fall 
5 meters in the first second (ignoring the minor point that g goes down a bit on a really high 
mountain), but if it’s going fast enough, don’t forget the curvature of the earth!  The surface of 
the earth curves away below a horizontal line, so if we choose the right speed, after one second 
the cannonball will have reached a point where the earth’s surface itself has dropped away by 5 
meters below the originally horizontal straight line.  In that case, the cannonball won’t have lost 
any height at all—defining “height” as distance above the earth’s surface.   
 
Furthermore, “vertically down” has turned around a bit (it means perpendicular to the earth’s 
surface) so the cannonball is still moving “horizontally”, meaning moving parallel to the earth’s 
surface directly beneath it.  And, since it’s above the earth’s atmosphere, it won’t have lost any 
speed, so exactly the same thing happens in the next second, and the next—it therefore goes in a 
circular path.  Newton had foreseen how a satellite would move—here’s his own drawing, with 
VD, VE and VF representing the paths of successively faster shots: 
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Newton’s brilliant insight—the above picture—is fully animated in my applet here.  
We can find how fast the cannonball must move to maintain the circular orbit by using 
Pythagoras’ theorem in the diagram below (which grossly exaggerates the speed so that you can 
see how to do the proof). 
 
The cannonball fired from point P goes v meters horizontally in one second and drops 5 meters 
vertically, and, if v has the right value, the cannonball will still be the same distance R from the 
earth’s center it was at the beginning of the second.   (Bear in mind that v is actually about a 
thousandth of R, so the change in the direction of “down” will be imperceptible, not like the 
exaggerated figure here.)  
 

R 

v meters 
P

R 

5 meters drop 

 
 
 

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/newt/newtmtn.html
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Knowing that the radius of the earth R is 6400 km, there is enough information in the above 
diagram to fix the value of v.  Notice that there is a right angled triangle with sides R and v and 
hypoteneuse .  Applying Pythagoras’ theorem, 5R+
 

(R + 5)2 = R2 + v2, 
 

R2 + 10R + 25 = R2 + v2. 
 

Newton knew (in different units) that R = 6400 km, so the 25 in the above equation can be 
neglected to give:  

2 10 10 6400 1000,  so 8000.v R v= = × × =  
 

The units for v are of course meters per second, on our diagram we show v as a distance, that 
traveled in the first second.  
 
So the cannonball must move at 8 km per second, or 5 miles per second if its falling is to match 
the earth’s curvature—this is 18,000 mph, once round the earth in a little less than an hour and a 
half.  This is in fact about right for a satellite in low earth orbit. 
 

Onward into Space: The Cannonball and the Moon 
It occurred to Newton one day (possibly because of a falling apple) that this familiar 
gravitational force we experience all the time here near the surface of the earth might extend 
outwards as far as the moon, and in fact might be the reason the moon is in a circular orbit. The 
radius of the moon’s orbit (384,000 km) and its speed in orbit (about 1 km per second) had long 
been known (see my notes here if you’re interested in how it was measured), so it was easy to 
find, using the same Pythagorean arguments as used for the cannonball above, that the moon 
“falls” 1.37 millimeters below a straight line trajectory in one second. 
 
That is to say, the ratio of the moon’s acceleration towards the center of the earth to the 
cannonball’s is 1.37/5000, or about 1/3600.   
 
But the radius of the moon’s orbit is about 60 times greater than the cannonball’s (which is just 
the radius of the earth, approximately).  Since 60 60 3600× = , Newton concluded that the 
gravitational force decreased with distance as 1/r2.   

Newton’s Universal Law of Gravitation 
Newton then boldly extrapolated from the earth, the apple and the moon to everything, asserting 
his  Universal Law of Gravitation: 
 
Every  body in the universe attracts every other body with a gravitational force that decreases 
with distance as 1/r2. 
 
But actually he knew more about the gravitational force: from the fact that bodies of different 
masses near the earth’s surface accelerate downwards at the same rate, using F = ma (his Second 
Law) if two bodies of different masses have the same acceleration they must be feeling forces in 

http://galileoandeinstein.physics.virginia.edu/lectures/gkastr1.html
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the same ratio as their masses (so a body twice as massive feels twice the gravitational force), 
that is, the gravitational force of attraction a body feels must be proportional to its mass.   
 
Now suppose we are considering the gravitational attraction between two bodies (as we always 
are), one of mass m1, one of mass m2. By Newton’s Third Law, the force body 1 feels from 2 is 
equal in magnitude (but of course opposite in direction) to that 2 feels from 1. If we think of m1 
as the earth, the force m2 feels is proportional to m2, as argued above—so this must be true 
whatever m1 is. And, since the situation is perfectly symmetrical, the force must also be 
proportional to m1. 
 
Putting all this together, the magnitude of the gravitational force between two bodies of masses 
m1 and m2 a distance r apart 
 

F = Gm1m2/r2. 
 

11 2 2The constant  6.67 10 N.m /kg .G −= ×  
 
It is important to realize that G cannot be measured by any astronomical observations.  For 
example, g at the surface of the earth is given by 
 

g = GmE/rE
2 

 
where mE is the mass and rE the radius of the earth. Notice that by measuring g, and knowing rE, 
we can find GmE.  But this does not tell us what G is, since we don’t know mE!  It turns out that 
this same problem arises with every astronomical observation. Timing the planets around the sun 
will give us GmSun.  So we can figure out the ratio of the sun’s mass to the earth’s, but we can’t 
find an absolute value for either one.  
 
The first measurement of G was made in 1798 by Cavendish, a century after Newton’s work. 
Cavendish measured the tiny attractive force between lead spheres of known mass.  For details 
on how an experiment at the University of Virginia in 1969 improved on Cavendish’s work, 
click on the UVa Physics site here.  
 
Cavendish said he was “weighing the earth” because once G is measured, he could immediately 
find the mass of the earth mE from g = GmE/rE

2, and then go on the find the mass of the sun, etc. 

Describing the Solar System: Kepler’s Laws 
Newton’s first clue that gravitation between bodies fell as the inverse-square of the distance may 
have come from comparing a falling apple to the falling moon, but important support for his idea 
was provided by a detailed description of planetary orbits constructed half a century earlier by 
Johannes Kepler.   
 
Kepler had inherited from Tycho Brahe a huge set of precise observations of planetary motions 
across the sky, spanning decades.  Kepler himself spent eight years mathematically analyzing the 
observations of the motion of Mars, before realizing that Mars was moving in an elliptical path. 
 

http://www.phys.virginia.edu/History/Beams/gravity.asp
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To appreciate fully how Kepler’s discovery confirmed Newton’s theory, it is worthwhile to 
review some basic properties of ellipses. 

Mathematical Interlude: Ellipses 101 
A circle can be defined as the set of all points which are the same distance R from a given point, 
so a circle of radius 1 centered at the origin O is the set of all points distance 1 from O.  
 
An ellipse can be defined as the set of all points such that the sum of the distances from two fixed 
points is a constant length (which must obviously be greater than the distance between the two 
points!).  This is sometimes called the gardener’s definition: to set the outline of an elliptic 
flower bed in a lawn, a gardener would drive in two stakes, tie a loose rope between them, then 
pull the rope tight in all different directions to form the outline. 

P 

C F2 F1 
A' 

B

a 

b 

A 

 
 
In the diagram, the stakes are at F1, F2, the red lines are the rope, P is an arbitrary point on the 
ellipse. 
 
CA is called the semimajor axis length a, CB the semiminor axis, length b.   
 
F1, F2 are called the foci (plural of focus). 
  
Notice first that the string has to be of length 2a, because it must stretch along the major axis 
from F1 to A then back to F2, and for that configuration there’s a double length of string along 
F2A and a single length from F1 to F2.  But the length A' F1 is the same as F2A, so the total length 
of string is the same as the total length  A'A = 2a.  
 
Suppose now we put P at B.  Since F1B = BF2, and the string has length 2a, the length F1B = a.  
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C 

B

F2 F1 
A' ae 

a 

b 

A 

 
 
 
We get a useful result by applying Pythagoras’ theorem to the triangle F1BC,  
 

( )2 2 2
1 .F C a b= −  

(We shall use this shortly.) 
 
Evidently, for a circle, F1C = 0.  The eccentricity of the ellipse is defined as the ratio of F1C to a,  
so 

( )2
1eccentricity  / 1 / .e FC a b a= = −  

 
The eccentricity of a circle is zero. The eccentricity of a long thin ellipse is just below one.  
 
F1 and F2 on the diagram are called the foci of the ellipse (plural of focus) because if a point 
source of light is placed at F1, and the ellipse is a mirror, it will reflect—and therefore focus—all 
the light to F2.  (This can be proved using the string construction.) 
 
An ellipse is essentially a circle scaled shorter in one direction: in (x, y) coordinates it is 
described by the equation 

2 2

2 2 1,x y
a b

+ =  

 
 a circle being given by  a = b. 
 
In fact, in analyzing planetary motion, it is more natural to take the origin of coordinates at the 
center of the Sun rather than the center of the elliptical orbit.  It is also more convenient to take 
( ,r )θ  coordinates instead of (x, y) coordinates, because the strength of the gravitational force 

depends only on  r.  Therefore, the relevant equation describing a planetary orbit is the ( ),r θ  
equation with the origin at one focus.  For an ellipse of semi major axis a and eccentricity e the 
equation is: 
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( )21
1 cos

a e
e

r
.θ

−
= +  

 
It is not difficult to prove that this is equivalent to the traditional equation in terms of x, y 
presented above. 
 
 
Kepler summarized his findings about the solar system in his three laws: 
 
1. The planets all move in elliptical orbits with the Sun at one focus.  
 

 
2. As a planet moves in its orbit, the line from the center of the Sun to the center of the planet 
sweeps out equal areas in equal times, so if the area SAB (with curved side AB) equals the area 
SCD, the planet takes the same time to move from A to B as it does from C to D.   

B

C

D
A

S

 

 
For my Flashlet illustrating this law, click here. 
 
3. The time it takes a planet to make one complete orbit around the sun T (one planet year) is 
related to its average distance from the sun R: 
 

2 3.T R∝  
 
In other words, if a table is made of the length of year T for each planet in the solar system, and 
its average distance from the sun R, and  is computed for each planet, the numbers are all 
the same. 

2 /T R3

 
These laws of Kepler’s are precise, but they are only descriptive—Kepler did not understand 
why the planets should behave in this way.  Newton’s great achievement was to prove that all 
this complicated behavior was the consequence of one simple law of attraction.  

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/kepler6.htm
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How Newton’s Law of Universal Gravitation Explains Kepler’s Laws 
Surprisingly, the first of Kepler’s laws—that the planetary paths are elliptical—is the toughest to 
prove beginning with Newton’s assumption of inverse-square gravitation.  Newton himself did it 
with an ingenious geometrical argument, famously difficult to follow.  It can be more easily 
proved using calculus, but even this is nontrivial, and we shall not go through it in class.  (The 
proof is given later in these notes, if you’re curious to see how it’s done.) 
 
The best strategy turns out to be to attack the laws in reverse order. 

Kepler’s Third Law (well, for circular orbits) 
It is easy to show how Kepler’s Third Law follows from the inverse square law if we assume the 
planets move in perfect circles, which they almost do. The acceleration of a planet moving at 
speed v in a circular orbit of radius R is v2/R towards the center.  (Of course you already know 
this, but it is amusing to see how easy it is to prove using the Pythagoras diagram above: just 
replace the 5 meters by ½ at2, the “horizontal” distance v by vt, write down Pythagoras’ theorem 
and take the limit of a very small time.)  
 
Newton’s Second Law F = ma for a planet in orbit becomes:  
 

2

2 .mv MmG
R R

=  

 
Now the time for one orbit is 2 /T R ,vπ=  so dividing both sides of the equation above by R, we 
find: 
 

2 3 2

3

4, so 
2
T R T

GM R GM

2π
π

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

. 

 
This is Kepler’s Third Law:  has the same numerical value for all the sun’s planets. 2 /T R3

3

  
 
Exercise: how are R, T related if the gravitational force is proportional to 1/R?  to 1/R3? To R? 
 
The point of the exercise is that Kepler’s Third Law, based on observation, forces us to the 
conclusion that the Law of Gravity is indeed inverse square. 
 
 
In fact, Newton went further—he generalized the proof to elliptic orbits, and established that for 
the inverse square law R must (for ellipses) be replaced by a, the semimajor axis of the ellipse, 
that is to say  is the same for all planets.  This is in fact exactly what Kepler found to be 
the case.   

2 /T a

 
It  follows immediately that all elliptic orbits with the same major axis length, whatever their 
eccentricity, have the same orbital time. 
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Kepler’s Second Law 
A planet in its path around the sun sweeps out equal areas in equal times. 
 
Suppose at a given instant of time the planet is at point P in its orbit, moving with a velocity v  
meters per second in the direction along the tangent at P (see figure).  In the next second it will 
move v meters, essentially along this line (the distance is of course greatly exaggerated in the 
figure) so the area swept out in that second is that of the triangle SPQ, where S is the center of 
the sun.   
 

P 

 

v  
Q 

S 

r⊥

 
The area of triangle SPQ is just ½ base x height.  The base PQ is v meters long, the height is the 
perpendicular distance  from the vertex of the triangle at the sun S to the baseline PQ, which is 
just the tangential velocity vector v . 

r⊥

 
Hence 

1rate of sweeping out of area 
2

r v⊥= . 

 
Comparing this with the angular momentum L of the planet as it moves around the sun, 
 

L mvr⊥=  
 
it becomes apparent that Kepler’s Second Law, the constancy of the area sweeping rate, is telling 
us that the angular momentum of the planet around the sun is constant. 
 
In fact, 

rate of sweeping out of area .
2
L
m

=  

 
To see what this means, think of applying a force to a wheel on a fixed axle: 
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If the force is above the axle, as shown, the wheel will begin to turn anticlockwise, if it is below 
the axle the wheel will turn the other way—assuming no friction, the rate of change of angular 
momentum is equal to the torque, the product of the magnitude of the force and the 
perpendicular distance of the line of action of the force from the center of rotation, the axle.  If 
the line of action of the force passes through the middle of the axle, there is no torque, no 
rotation, no change of angular momentum. 
 
For the planet in orbit, the fact that the angular momentum about the sun does not change means 
that the force acting on the planet has no torque around the sun—the force is directly towards the 
sun.  This now seems obvious, but Kepler himself thought the planets were pushed around their 
orbits by spokes radiating out from the sun.  Newton realized that Kepler’s Second Law showed 
this was wrong—the force must be directly towards the sun. 

* Calculus Derivation of Kepler’s First Law 
Note: I’m including this derivation of the elliptic orbit just so you can see that it’s calculus, not 
magic, that gives this result.  This is an optional section, and will not appear on any exams.  
 
We now back up to Kepler’s First Law: proof that the orbit is in fact an ellipse if the 
gravitational force is inverse square.  As usual, we begin with Newton’s Second Law: F = ma, in 
vector form. The force is GMm/r2 in a radial inward direction. But what is the radial 
acceleration?  Is it just d2r/dt2?  Well, no, because if the planet’s moving in a circular orbit it’s 
still accelerating inwards at 2rω  (same as v2/r) even though r is not changing at all. The total 
acceleration is the sum, so ma = F becomes:  
 

2
2

2 2

d r GMr
dt r

ω− = −
 

 
This isn’t ready to integrate yet, because ω  varies too. But since the angular momentum L is 
constant, 2L mr ω= , we can get rid of ω  in the equation to give: 
 

22

2 2 2

2

2 3

d r GM Lr
dt r mr

GM L
r mr

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

= − +
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This equation can be integrated, using two very unobvious tricks, figured out by hindsight.  The 
first is to change go from the variable r to its inverse, u = 1/r. The other is to use the constancy of 
angular momentum to change the variable t to θ . 
   
Anyway, 

2
2

m dL mr
u dt

θω= =
 

so  
2

.d Lu d
dt m dθ

=  

 
Therefore 

2

1 1dr d du L du
dt dt u u dt m dθ

⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

 

and similarly  
2 2 2 2

2 2 .d r L u d u
dt m d 2θ

= −  

 
Substituting in the equation of motion gives:  
 

2 2

2 2

d u GMmu
d Lθ

+ =
 

 
This equation is easy to solve!  The solution is 
 

2

2

1 cosGMmu A
r L

θ= = +
 

 
where A is a constant of integration, determined by the initial conditions.  
 
 This is equivalent to the standard ( ,r )θ  equation of an ellipse of semi major axis a and 
eccentricity e, with the origin at one focus, which is: 
 

( )21
1 cos

a e
e

r
.θ

−
= +  

Deriving Kepler’s Third Law for Elliptical Orbits 
The time it takes a planet to make one complete orbit around the Sun T (one planet year) is 
related to the semi-major axis a of its elliptic orbit by 
 

2 3.T a∝  
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We have already shown how this can be proved for circular orbits, however, since we have gone 
to the trouble of deriving the ( ,r )θ  formula for an elliptic orbit, we add here the (optional) proof 
for that more general case.  
 
(Note that this same result is derived in the next lecture using energy and angular momentum 
conservation—the proof given here is quicker, but depends on knowing the ( ,r )θ  equation for 
the ellipse.) 
 
The area of an ellipse is ,abπ  and the rate of sweeping out of area is L/2m, so the time T for a 
complete orbit is evidently  

.
/ 2
abT

L m
π

=  

 
Putting the equation 

2

2

1 cosGMm A
r L

θ= +
 

in the standard form 
( )21

1 cos ,
a e

e
r

θ
−

= +  

we find  
2 2/ (1L GMm a e= − 2 ).  

 
Now, the top point B of the semi-minor axis of the ellipse (see the diagram above) must be 
exactly a from F1 (visualize the string F1BF2), so using Pythagoras’ theorem for the triangle 
F1OB we find  
 

( )2 2 21 .b a e= −  
 
Using the two equations above, the square of the orbital time 
 

( )
( ) ( )
( ) ( )

22 2

2 2 2

2 2 2 2

2 3

2 /

2 / 1

2 / /

4 / .

T m ab L

m ab GMm a e

m ab GMm a b a

a GM

π

π

π

π

=

= −

=

=

 

 
We have established, then, that the time for one orbit depends only on the semimajor axis 
of the orbit: it does not depend on how eccentric the orbit is. 
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Visualizing Gravity: the Gravitational Field 
Introduction 
Let’s begin with the definition of gravitational field: 
 
The gravitational field at any point P in space is defined as the gravitational force felt by a tiny 
unit mass placed at P. 
 
So, to visualize the gravitational field, in this room or on a bigger scale such as the whole Solar 
System, imagine drawing a vector representing the gravitational force on a one kilogram mass at 
many different points in space, and seeing how the pattern of these vectors varies from one place 
to another (in the room, of course, they won’t vary much!).  We say “a tiny unit mass” because 
we don’t want the gravitational field from the test mass itself to disturb the system.  This is 
clearly not a problem in discussing planetary and solar gravity. 
 
To build an intuition of what various gravitational fields look like, we’ll examine a sequence of 
progressively more interesting systems, beginning with a simple point mass and working up to a 
hollow spherical shell, this last being what we need to understand the Earth’s own gravitational 
field, both outside and inside the Earth. 

Field from a Single Point Mass 
This is of course simple: we know this field has strength GM/r2, and points towards the mass—
the direction of the attraction.  Let’s draw it anyway, or, at least, let’s draw in a few vectors 
showing its strength at various points:  
 

 
This is a rather inadequate representation: there’s a lot of blank space, and, besides, the field 
attracts in three dimensions, there should be vectors pointing at the mass in the air above (and 
below) the paper.  But the picture does convey the general idea.  
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A different way to represent a field is to draw “field lines”, curves such that at every point along 
the curve’s length, its direction is the direction of the field at that point.  Of course, for our single 
mass, the field lines add little insight: 

 
 
The arrowheads indicate the direction of the force, which points the same way all along the field 
line.   A shortcoming of the field lines picture is that although it can give a good general idea of 
the field, there is no precise indication of the field’s strength at any point.  However, as is 
evident in the diagram above, there is a clue: where the lines are closer together, the force is 
stronger.  Obviously, we could put in a spoke-like field line anywhere, but if we want to give an 
indication of field strength, we’d have to have additional lines equally spaced around the mass.  
 

Gravitational Field for Two Masses 
The next simplest case is two equal masses. Let us place them symmetrically above and below 
the x-axis: 

M 

M 

P

y 

x 
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Recall Newton’s Universal Law of Gravitation states that any two masses have a mutual 
gravitational attraction .  A point mass m = 1 at P will therefore feel gravitational 
attraction towards both masses M, and a total gravitational field equal to the vector sum of these 
two forces, illustrated by the red arrow in the figure. 

2
1 2 /Gm m r

The Principle of Superposition 
The fact that the total gravitational field is just given by adding the two vectors together is called 
the Principle of Superposition.  This may sound really obvious, but in fact it isn’t true for every 
force found in physics:  the strong forces between elementary particles don’t obey this principle, 
neither do the strong gravitational fields near black holes.  But just adding the forces as vectors 
works fine for gravity almost everywhere away from black holes, and, as you will find later, for 
electric and magnetic fields too.  Finally, superposition works for any number of masses, not just 
two: the total gravitational field is the vector sum of the gravitational fields from all the 
individual masses.  Newton used this to prove that the gravitational field outside a solid sphere 
was the same as if all the mass were at the center by imagining the solid sphere to be composed 
of many small masses—in effect, doing an integral, as we shall discuss in detail later. He also 
invoked superposition in calculating the orbit of the Moon precisely, taking into account gravity 
from both the Earth and the Sun. 
   
Exercise:  For the two mass case above, sketch the gravitational field vector at some other points: 
look first on the x-axis, then away from it.  What do the field lines look like for this two mass 
case?  Sketch them in the neighborhood of the origin.   

Field Strength at a Point Equidistant from the Two Masses 
It is not difficult to find an exact expression for the gravitational field strength from the two 
equal masses at an equidistant point P.   
 
Choose the x,y axes so that the masses lie on the y-axis at (0, a) and (0,-a).   
 
By symmetry, the field at P must point along the x-axis, so all we have to do is compute the 
strength of the x-component of the gravitational force from one mass, and double it.  
 
                                 

 

α
(0,0) 

(0,a) 

s

a 

P (x, 0) 
x-axis 
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If the distance from the point P to one of the masses is s, the gravitational force towards that 
mass has strength .  This force has a component along the x-axis equal to 2/GM s
( )2/ cosGM s α , where α  is the angle between the line from P to the mass and the x-axis, so the 

total gravitational force on a small unit mass at P is ( )22 / cosGM s α directed along the x-axis. 
 
From the diagram, cos /x sα = , so the force on a unit mass at P  from the two masses M is 
 

( )3/ 22 2

2GMxF
x a

= −
+

 

 
in the x-direction.  Note that the force is exactly zero at the origin, and everywhere else it points 
towards the origin.  

Gravitational Field from a Ring of Mass 
Now, as long as we look only on the x-axis, this identical formula works for a ring of mass 2M in 
the y, z  plane!  It’s just a three-dimensional version of the argument above, and can be visualized 
by rotating the two-mass diagram above around the x-axis, to give a ring perpendicular to the 
paper, or by imagining the ring as made up of many beads, and taking the beads in pairs opposite 
each other.    

P

s
a

x

 
Bottom line: the field from a ring of total mass M, radius a, at a point P on the axis of the ring 
distance x from the center of the ring is 

( )3/ 22 2

GMxF
x a

= −
+

. 

*Field Outside a Massive Spherical Shell 
This is an optional section: you can safely skip to the result on the last line.  In fact, you will 
learn an easy way to derive this result using Gauss’s Theorem when you do Electricity and 
Magnetism.  I just put this section in so you can see that this result can be derived by the 
straightforward, but quite challenging, method of adding the individual gravitational attractions 
from all the bits making up the spherical shell. 
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What about the gravitational field from a hollow spherical shell of matter?  Such a shell can be 
envisioned as a stack of rings.   
 

s

P 

 
 
 
To find the gravitational field at the point P,  we just add the contributions from all the rings in 
the stack.  

P 

dθ 

r 

x 

θ α 

s 
a

 
 
In other words, we divide the spherical shell into narrow “zones”: imagine chopping an orange 
into circular slices by parallel cuts, perpendicular to the axis—but of course our shell is just the 
skin of the orange!  One such slice gives a ring of skin, corresponding to the surface area 
between two latitudes, the two parallel lines in the diagram above.  Notice from the diagram that 
this “ring of skin” will have radius sina θ , therefore circumference 2 sinaπ θ and breadth adθ , 
where we’re taking dθ  to be very small.  This means that the area of the ring of skin is  
 

length breadth 2 sina adπ θ θ× = × . 
 

So, if the shell has mass ρ  per unit area, this ring has mass 22 sina dπ ρ θ θ , and the gravitational 
force at P from this ring will be  
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( )
2

3/ 22 2

2 sin(ring ) Gx a dF d
x a

π ρ θ θθ = −
+

. 

 
Now, to find the total gravitational force at P from the entire shell we have to add the 
contributions from each of these “rings” which, taken together, make up the shell.  In other 
words, we have to integrate the above expression in from 0 to = .θ θ θ π=    
 
So the gravitational field is: 
 

( )
2 2

3/ 2 32 2
0 0

2 sin 2 sinGx a d Gx a dF
sx a

π ππ ρ θ θ π ρ θ
= − = −

+
∫ ∫

θ . 

 
In fact, this is quite a tricky integral: θ , x and s are all varying!  It turns out to be is easiest done 
by switching variables from θ  to s. 
 
Label the distance from P  to the center of the sphere by r.  Then, from the diagram, 

2 2 2 2 coss r a ar θ= + − , and a, r are constants, so sinsds ar dθ θ= ,  
 

and 
2 2 2

3 3
0

2 sin 2 2 .
r a r a

r a r a

Gx a d Gx a sds Ga xdsF
s s ar ar s

π π ρ θ θ π ρ ρπ+ +

− −

= − = − ⋅ = −∫ ∫ 2∫  

 

Now cosx s α= , and from the diagram 2 2 2 2 cosa s r sr α= + − , so 
2 2 2

2
s r ax

r
+ −

= ,  

and, writing ,  24 a Mπ ρ =
 

 ( )
2 2

2 2
2 2 2

1 11 2
4 4

r a

r a

GM r a GM GMF ds a r a
ar s ar r a r a r

+

−

⎛ ⎞− ⎛ ⎞⎛ ⎞= + = + − − =⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠⎝ ⎠
∫ 2 .  

 
 

The derivation was rather lengthy, but the answer is simple:    
 
The gravitational field outside a uniform spherical shell is GM/r 2 towards the center. 
 
And, there’s a bonus: for the ring, we only found the field along the axis, but for the spherical 
shell, once we’ve found it in one direction, the whole problem is solved—for the spherical shell, 
the field must be the same in all directions. 

Field Outside a Solid Sphere 
Once we know the gravitational field outside a shell of matter is the same as if all the mass were 
at a point at the center, it’s easy to find the field outside a solid sphere: that’s just a nesting set of 
shells, like spherical Russian dolls.  Adding them up, 
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The gravitational field outside a uniform sphere is GM/r 2 towards the center. 
 
There’s an added bonus: since we found this result be adding uniform spherical shells, it is still 
true if the shells have different densities, provided the density of each shell is the same in all 
directions.   The inner shells could be much denser than the outer ones—as in fact is the case for 
the Earth.  

Field Inside a Spherical Shell 

Area A2 

Area A1 

P 
r2 

r1 

 
 
 
This turns out to be surprisingly simple!  We imagine the shell to be very thin, with a mass 
density ρ  kg per square meter of surface. Begin by drawing a two-way cone radiating out from 
the point P, so that it includes two small areas of the shell on opposite sides: these two areas will 
exert gravitational attraction on a mass at P in opposite directions.  It turns out that they exactly 
cancel.   
 
This is because the ratio of the areas A1 and A2 at distances r1 and r2 are given by 2 2

1 2 1 2/ /A A r r= : 
since the cones have the same angle, if one cone has twice the height of the other, its base will 
have twice the diameter, and therefore four times the area.  Since the masses of the bits of the 
shell are proportional to the areas, the ratio of the masses of the cone bases is also .  But 
the gravitational attraction at P from these masses goes as , and that r2 term cancels the 
one in the areas, so the two opposite areas have equal and opposite gravitational forces at P.   

2
1 2/r r 2

2/Gm r

 
In fact, the gravitational pull from every small part of the shell is balanced by a part on the 
opposite side—you just have to construct a lot of cones going through P to see this.  (There is 
one slightly tricky point—the line from P to the sphere’s surface will in general cut the surface at 
an angle.  However, it will cut the opposite bit of sphere at the same angle, because any line 
passing through a sphere hits the two surfaces at the same angle, so the effects balance, and the 
base areas of the two opposite small cones are still in the ratio of the squares of the distances r1, 
r2.)    
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Field Inside a Sphere: How Does g Vary on Going Down a Mine? 
This is a practical application of the results for shells. On going down a mine, if we imagine the 
Earth to be made up of shells, we will be inside a shell of thickness equal to the depth of the 
mine, so will feel no net gravity from that part of the Earth.  However, we will be closer to the 
remaining shells, so the force from them will be intensified.  
 
Suppose we descend from the Earth’s radius rE  to a point distance r from the center of the Earth. 
What fraction of the Earth’s mass is still attracting us towards the center? Let’s make life simple 
for now and assume the Earth’s density is uniform, call it ρ  kg per cubic meter.  

 

r 

rE 

 
 

Then the fraction of the Earth’s mass that is still attracting us (because it’s closer to the center 
than we are—inside the red sphere in the diagram) is 3 3 34 4

3 3/ /red blue E EV V r r r rπ π= = 3/ .   
 
The gravitational attraction from this mass at the bottom of the mine, distance r from the center 
of the Earth, is proportional to mass/r2.    We have just seen that the mass is itself proportional to 
r3, so the actual gravitational force felt must be proportional to 3 2/r r r= .   
 
That is to say, the gravitational force on going down inside the Earth is linearly proportional to 
distance from the center.  Since we already know that the gravitational force on a mass m at the 
Earth’s surface  is mg,  it follows immediately that in the mine the gravitational force must 
be 

Er r=

/ EF mgr r= . 
 

So there’s no force at all at the center of the Earth—as we would expect, the masses are 
attracting equally in all directions.  
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Working with Gravity: Potential Energy 
Gravitational Potential Energy near the Earth 
We first briefly review the familiar subject of gravitational potential energy near the Earth’s 
surface, such as in a room.  The gravitational force is of course F mg=  vertically downwards. 
 
To raise a mass m, we must apply an upward force F− , balancing gravity, so the net force on 
the body is zero and it can move upwards at a steady speed (ignoring air resistance, of course, 
and assuming we gave it a tiny extra push to get it going). 
 
Applying the steady force as the mass moves a small distance F− rΔ  takes work F r− ⋅Δ , and 
to raise the mass m through a height h takes work mgh.  This energy is stored and then, when the 
object falls, released as kinetic energy.  For this reason it is called potential energy, being 
“potential kinetic energy”, and written  
 

( ) .U U h mgh= =  
 
Note one obvious ambiguity in the definition of potential energy: do we measure h from the 
floor, from the top of our workbench, or what?  That depends on how far we will allow the raised 
object to fall and convert its potential energy to kinetic energy—but the main point is it doesn’t 
matter where the zero is set, the quantity of physical interest is always a difference of potential 
energies between two heights—that’s how much kinetic energy is released when it falls from one 
height to the other. (Perhaps we should mention that some of this potential energy may go to 
another form of energy when the object falls—if there is substantial air resistance, for example, 
some could end up eventually as heat.  We shall ignore that possibility for now.)  
 

 
h

U(h) 
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Onward and Upward 
Let’s now consider the work involved in lifting something so high that the Earth’s gravitational 
pull becomes noticeably weaker.  
  
It will still be true that lifting through rΔ  takes work F r− ⋅Δ , but now 2( ) /F r GMm r= , 
downwards.  So  

2

GMmdU F dr dr
r

= − ⋅ =  

 
and to find the total work needed to lift a mass m from the Earth’s surface (rE from the center of 
the Earth) to a point distance r from the center we need to do an integral: 
 

( ) ( ) 2

1 1 .
E

r

E
Er

GMmU r U r dr GMm
r r

⎛ ⎞
′− = = −⎜ ⎟′ ⎝ ⎠

∫ r
 

 
 
First check that this makes sense close to the Earth’s surface, that is, in a room. For this case, 
 

,   where  .E Er r h h r= +  
Therefore 

( ) ( )

( )

2

1 1
E

E

E E

E E

E

U r U r GMm
r r

r h rGMm
r r h

hGMm
r

mgh

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
⎛ ⎞+ −

= ⎜ ⎟⎜ ⎟+⎝ ⎠
⎛ ⎞

≅ ⎜ ⎟
⎝ ⎠

=

 

 
where the only approximation is to replace rE + h by rE in the denominator, giving an error of 
order h/rE, parts per million for an ordinary room. 
 
To see what this potential function looks like on a larger scale, going far from the Earth, it is 
necessary first to decide where it is most natural to set it equal to zero. The standard convention 
is to set the potential energy equal to zero at r = infinity!  The reason is that if two bodies are 
very far from each other, they have no influence on each other’s movements, so it is pointless to 
include a term in their total energy which depends on their mutual interaction.   
 
Taking the potential energy zero at infinity gives the simple form 
 



 26

( ) ,GMmU r
r

= −  

 
we plot it below with r in units of Earth radii. The energy units are GMm/rE, the −1 at the far left 
being at the Earth’s surface (r = 1), and the first steep almost linear part corresponds to mgh.  

 
 

The above is a map of the potential energy “hill” to be climbed in going away from the Earth 
vertically upwards from any point.  To gain something closer to a three-dimensional perspective, 
the Earth can be visualized as being at the bottom of a “potential well” with flared sides, like 
this: 

 
 
Or, from a different perspective: 
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Of course, this is still only in two dimensions, but that’s fine for most gravitational problems: 
planetary orbits are only two-dimensional.  A satellite in a circular orbit around the Earth can be 
imagined as a frictionless particle sliding around inside this “cone” at a fixed height, for an 
elliptic orbit the particle would slide between different heights. 

Gravitational Potential Energy in a Two Body System 
By this, I mean how do we extend the above picture of gravitational potential as a “well” going 
down out of a flat plane to, for example, the combined potential energies of a mass in the 
gravitational fields of both the Earth and the Moon, as would occur on a flight to the Moon. 
 
From the beginning of the previous section, the potential energy difference between any two 
points from the gravitational force of a single body is the work done against that force in going 
from one point to the other,  

( ) ( )
2

1

2 1 .
r

r

U r U r F dr− = − ⋅∫  

It doesn’t matter how the path gets from 1r  to 2r : if it took different amounts of work depending 
on the path, we could gain energy by having a mass go up one path and down the other, a 
perpetual motion machine.  The fact that this is not true means the gravitational field is 
conservative: gravitational potential energy can b a term in a conservation of energy equation. 
 
Recall from the previous lecture that the gravitational field obeys the Law of Superposition:  to 
find the total gravitational force on a mass from the gravitational field of both the Earth and the 
Moon, we just add the vectors representing the separate forces. It follows immediately from this 
that, putting , the gravitational potential energy difference between two points 
is simply the sum of the two terms.  

Earth MoonF F F= +

 
From this, then, the potential energy of a mass somewhere between the Earth and the Moon is 
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( )total
E M

CE CM

GM m GM mU r
r r r r

= − −
− −

 

 
taking as usual , and  are the coordinates of the centers of the Earth and the 
Moon respectively. 

( ) 0U ∞ = ,CE CMr r

 
It’s worth visualizing this combined potential: it would look like two of these cone-like wells, 
one much smaller than the other, in what is almost a plain.  Going in a straight line from inside 
one well to the inside of the other would be uphill then downhill, and at the high point of the 
journey the potential energy would be flat, meaning that the gravitational pull of the Earth just 
cancels that of the Moon, so no work is being done in moving along the line at that point. The 
total potential energy there is still of course negative, that is, below the value (zero) far away in 
the plain. 

Gravitational Potential 
The gravitational potential is defined as the gravitational potential energy per unit mass, and is 
often written .   We shall rarely use it—the problems we encounter involve the potential 

energy of a given mass m.  (But  is a valuable concept in more advanced treatments.  It is 
analogous to the electrostatic potential, and away from masses obeys the same partial differential 
equation, .) 

( )rϕ

( )rϕ

( )2 0rϕ∇ =

Escape! 
How fast must a rocket be moving as it escapes the atmosphere for it to escape entirely from the 
Earth’s gravitational field?  This is the famous escape velocity, and, neglecting the depth of the 
atmosphere, it clearly needs sufficient initial kinetic energy to climb all the way up the hill, 
 

21 2, .
2 escape escape

E E

GMm GMmv v
r r

= =  

 
This works out to be about 11.2 km per sec.  For the Moon, escape velocity is only 2.3 km per 
second, and this is the reason the Moon has no atmosphere: if it had one initially, the Sun’s heat 
would have been sufficient to give the molecules enough thermal kinetic energy to escape.  In an 
atmosphere in thermal equilibrium, all the molecules have on average the same kinetic energy.  
This means lighter molecules on average move faster.  On Earth, any hydrogen or helium in the 
atmosphere would eventually escape for the same reason. 
 
Exercise: Saturn’s moon Titan is the same size as our Moon, but Titan has a thick atmosphere.  
Why? 
 
Exercise: Imagine a tunnel bored straight through the Earth emerging at the opposite side of the 
globe.  The gravitational force in the tunnel is / EF mgr r= , as derived above.   
(a) Find an expression for the gravitational potential energy in the tunnel.  Take it to be zero at 
the center of the Earth. 
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(b) Now sketch a graph of the potential energy as a function of distance from the Earth’s center, 
beginning at the center but continuing beyond the Earth’s radius to a point far away.  This curve 
must be continuous.  Conventionally, the potential energy is defined by requiring it to be zero at 
infinity.  How would you adjust your answer to give this result? 

Potential and Kinetic Energy in a Circular Orbit 
The equation of motion for a satellite in a circular orbit is 
 

2

2 .mv GMm
r r

=  

 
It follows immediately that the kinetic energy 
 

( )21 1 1
2 2 2. . /K E mv GMm r U r= = = − , 

 
that is, the Kinetic Energy = −1/2 (Potential Energy) so the total energy in a circular orbit is half 
the potential energy.   
 
The satellite’s motion can be visualized as circling around trapped in the circular potential “well” 
pictured above.  How fast does move?  It is easy to check that for this circular orbit 
 

.orbit
orbit

GMv
r

=  

 
Recalling that the escape velocity from this orbit is 2 /escape orbitv GM= r  , we have 
 
 2escape orbitv v=  
 
relating speed in a circular planetary orbit to the speed necessary, starting at that orbit, to escape 
completely from the sun’s gravitational field. 
 
This result isn’t surprising: increasing the speed by 2  doubles the kinetic energy, which would 
then exactly equal the potential energy: that means just enough kinetic energy for the satellite to 
climb the hill completely out of the “well”. 
 
Bottom line: the total energy of a planet of mass m in a circular orbit of radius r about a Sun of 
mass M is 

.
2tot

GMmE
r

= −  
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Elliptic Orbits: Paths to the Planets 
Deriving Essential Properties of Elliptic Orbits 
From a practical point of view, elliptical orbits are a lot more important than circular orbits.  A 
spaceship leaving earth and going in a circular orbit won’t get very far. And although proving the 
planetary orbits are elliptical is quite a tricky exercise (the details can be found in the last section 
of the Discovering Gravity lecture), once that is established a lot can be deduced without further 
fancy mathematics.   
 
Think about an astronaut planning a voyage from earth to Mars. The two important questions 
(apart from can I get back?) are: 
 
How much fuel will this trip need? 
How much time will it take? 
 
It is crucial to minimize the fuel requirement, because lifting fuel into orbit is extremely 
expensive.   
 
Ignoring minor refinements like midcourse corrections, the spaceship’s trajectory to Mars will be 
along an elliptical path.  We can calculate the amount of fuel required if we know the total 
energy of the ship in this elliptical path, and we can calculate the time needed if we know the 
orbital time in the elliptical path because, as will become apparent, following the most fuel-
efficient path will take the ship exactly half way round the ellipse. 
 
 Remarkably, for a spaceship (or a planet) in an elliptical orbit, both the total energy and the 
orbital time depend only on the length of the major axis of the ellipse—as we shall soon show.  
Visualizing the orbit of the spaceship going to Mars, and remembering it is an ellipse with the 
sun at one focus, the smallest ellipse we can manage has the point furthest from the sun at Mars, 
and the point nearest to the sun at earth.   
 
(Important Exercise:  Sketch the orbits of earth and Mars, and this elliptical trajectory.) 
 
This then immediately gives us the major axis of this smallest ellipse, so we can figure out, from 
the results given below, how much fuel and time this will take. 
 
Here are the two basic relevant facts about elliptical orbits:  
 
1.  The time to go around an elliptical orbit once depends only on the length a of the 
semimajor axis, not on the length of the minor axis: 
 

2 3
2 4 .aT

GM
π

=  

 
2.  The total energy of a planet in an elliptical orbit depends only on the length a of the 
semimajor axis, not on the length of the minor axis: 
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.
2tot

GMmE
a

= −  

 
These results will get you a long way in understanding the orbits of planets, asteroids, spaceships 
and so on—and, given that the orbits are elliptical, they are fairly easy to prove. 
 
They follow from the two conservation laws: 
 
total energy stays constant  
angular momentum stays constant 
 
throughout the elliptical orbital motion. 
 
We’ll derive the results for a planet, beginning with the conservation laws.  In fact, it turns out 
that all we need to use is that the energy and angular momentum are the same at the two extreme 
points of the orbit: 
 
 

r2 r1 
v1 

v2 

  
Labeling the distance of closest approach r1, and the speed at that point v1, the furthest point r2, 
the speed there v2, we have 
 

1 1 2 2mv r mv r L= =  
and 
 

2 21 1
1 1 2 22 2/ /mv GMm r mv GMm r E− = − .=  

 
From the second equation,  
 

2 21 1
1 1 2 22 2/ ( / ) 0mv GMm r mv GMm r− − − .=  

 
Rearranging, and dropping the common factor m,  
 

( )2 21
1 22

1 2

1 1 .v v GM
r r

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 

 
Using the angular momentum equation to write v1 1 2/ , / 2L mr v L mr=  , and substituting these =
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values in this equation gives L2 in terms of r1, r2: 
 

2 2

2 2 2 2
1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1
2 2
L L GM
m r r m r r r r r r

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
− = + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

 

from which  
2

2

1 2

.
2 1 1
L GM
m

r r

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 

 
The area of the ellipse is abπ  (recall it’s a circle squashed by a factor b/a in one direction, so 

2aπ becomes abπ ), and the rate of sweeping out of area is L/2m, so the time T  for a complete 
orbit is given by:  
 

( ) ( )2 2
2

2 2
1 2

2 1 1 .
/ 4
ab ab

T
L m GM r r
π π ⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

 

 
To make further progress in proving the orbital time T depends on a but not on b, we need to 
express r1, r2 in terms of a and b. 

Useful Ellipse Factoid 
Recall that the sun is at a focus F1 of the elliptical path (see figure below), and (from the “string” 
definition of the ellipse) the distance from the sun to point B at the end of the minor axis is a.  
Pythagoras’ theorem applied to the triangle F1BC gives 
 

( )2 21a e 2b− =  
and from the figure 

( )
( )

1

2

1

1

r a e

r a e

= −

= +
 

r1 
b 

r2 
ae C F1 

B 

a 

 
Therefore  

2
1 2 .r r b=  

Also from the figure 
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1 2 ,
2

r r a+
=  

 
so we have the amusing result that  
 
the semimajor axis a is the arithmetic mean of r1, r2 and the semiminor axis b is their 
geometric mean, and furthermore 
 

1 2
2

1 2 1 2

1 1 2 .r r a
r r r r b

⎛ ⎞ +
+ = =⎜ ⎟

⎝ ⎠
 

 

Deriving Kepler’s Law 
We can immediately use the above result to express the angular momentum L very simply: 
  

2 2

2

1 2

.
2 21 1
L GM GM b
m a

r r

= =
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 

 
We’re now ready to find the time for one orbit T .  Remember T is the total area of the orbit 
divided by the rate area is swept out, and that rate is L/2m, so:  
 

( ) ( )2 2 2 3
2

2 2 2

2 2 4 .
/ 4
ab ab a aT

L m GMb GM
π π π

= = =  

 
That is, 

2 3
2 4 ,aT

GM
π

=  

 
a simple generalization of the result for circular orbits. 
 
To prove that the total energy only depends on the length of the major axis, we simply add the 
total energies at the two extreme points: 
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Writing 
2
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,  it is easy to check that 
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where a is the semimajor axis. 
 

Exercise: From 
2 2

2 ,
2 2
L GMb
m a

=  find the speed of the planet at it goes through the point B at the 

end of the minor axis.  What is its potential energy at that point?  Deduce that the total energy 
depends only on the length of the major axis. (This is an alternative derivation.) 

Hyperbolic (and Parabolic?) Orbits 
Imagining the satellite as a particle sliding around in a frictionless well representing the potential 
energy as pictured above, one can see how both circular and elliptical orbits might occur.  
 
(Optional: More formally, we solved the equation of motion in earlier notes to find 
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which is equivalent to the equation for an ellipse 
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as discussed there.)   
 
However, that is not the whole story:  what if a rogue planet comes flying towards the Solar 
System from outer space?  What kind of orbit will it follow as it encounters the Sun’s gravity?  
In fact, our analysis of the equations of motion is equally valid in this case, and the ( ),r θ  
equation is the same as that above!  The new wrinkle is that e, which is always less than one for 
an ellipse, becomes greater than one, and this means that for some angles r can be infinite (the 
right-hand side of the above equation can be zero). The orbit is a hyperbola: the rogue comes in 
almost along a straight line at large distances, the Sun’s gravity causes it to deviate, it swings 
around the Sun, then recedes tending to another straight line path as it leaves the System. 
 
There is also the theoretical possibility of a parabolic orbit, going out to infinity but never 
approaching a straight line asymptote.  However, this requires exactly the correct energy—the 
slightest difference would turn it into a very long ellipse or a hyperbola.  In practice, of course, 
this delicate energy tuning would be upset by gravitational attraction from other planets.    
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Really Getting Out There: the Slingshot 
Although the elliptic orbit touching the (approximately) circular orbits of earth and Mars is the 
most economical orbit of getting to Mars, trips to the outer planets can get help.  Imagine a 
slowly moving spaceship reaching Jupiter’s orbit at a point some distance in front of Jupiter as 
Jupiter moves along the orbit.  In Jupiter’s frame of reference, this ship is moving towards 
Jupiter at a speed roughly equal to Jupiter’s own speed relative to the sun.  In Jupiter’s frame, 
assuming the spaceship is sufficiently far from the orbit that it doesn’t crash into Jupiter, it will 
fall towards Jupiter, swing around the back, and then be flung forward. In the sun’s frame, the 
gravitational pull on the spaceship from Jupiter was strongest as the spaceship swung behind 
Jupiter, and this pull accelerated the spaceship in the same direction Jupiter moves in the orbit, so 
the spaceship subsequently moves ahead of Jupiter, having gained enough energy to move 
further out in the solar system.  This is at the expense of Jupiter: during the time the spaceship 
was swing behind Jupiter, it slowed Jupiter’s orbital speed—but not much!   The slingshot is 
obviously a delicate operation: you don’t want to crash into Jupiter, but also you don’t want to be 
trapped in an elliptic orbit around Jupiter.  But the benefits are so great that in practice all 
spaceships venturing to the outer planets use it, often more than once.  
 
To practice the slingshot yourself, check out the flashlet here.    
 

Binary Stars and Tidal Forces 
Binary Stars 
Up to this point, we’ve been considering gravitational attraction between pairs of objects where 
one of them was much heavier than the other, and was taken to be fixed.  That is an excellent 
approximation for the Sun and the planets, or the planets and their satellites, but is not perfect. 
To see where it really breaks down, consider a binary star system with two equally massive stars.  
(Binary star systems are quite common, in fact most stars are in them.)  In the simplest case, the 
two stars will orbit each other in circles, or, rather, by symmetry they will orbit a common 
central point: 
 

  

2r 

 
 
For this case, the equation F = Ma must clearly be adjusted from the standard form above to: 
 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/Slingshot.htm
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Problems with more than one rotating body turn out to handle more easily if the acceleration is 
written 2rω  rather than   That’s because 2 / .v r ω  is the same for the two stars, v isn’t, except in 
the special case of equal mass.  
 
Consider now a binary system in which one star has mass M, the other 2M, but stay with the 
simple case of circular orbits.  This time both stars go in circles around the common center of 
mass, and of course both move at the same angular velocity ω, so their angular accelerations are 

22 ,r r 2ω ω respectively, the accelerations are in inverse proportion to the masses, as they must be 
since both experience the same magnitude force, their mutual gravitational attraction.  
 
 

r 2r 

 
 

The Earth-Moon System: Tidal Forces 
The Earth’s mass is about eighty times the Moon’s mass.  This means that the Earth and the 
Moon both circle the system center of mass, a point about one-eightieth of the way from the 
center of the Earth to the center of the Moon—about 3,000 miles from Earth’s center, so still 
inside the Earth. 
 
To compute the Moon’s orbital period, if we need to be precise, we should adjust the equation 
previously used to  
  2 2/cmr GMm rω =
 
where r is the Earth-Moon distance, and  is the Moon’s distance from the system center of 
mass.  Putting gives close to 1% accuracy, usually adequate for our purposes here, but 
clearly not for precision astronomy. 

cr

cr = r

 
Another important point is that to find the gravitational force on the Moon, we take it to be the 
same as if all the Moon’s mass were concentrated at a point in the center.  Assuming the Moon is 
spherically symmetrical, this is OK.  We’ve established that the force on a mass outside the 
Moon is the same as if all the Moon’s mass were at the center, so, since the gravitational forces 
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are equal and opposite, the force on the Moon from the mass is the same as if all the Moon’s 
mass were at the center.  Therefore, the gravitational force of the Earth on the Moon, which can 
be thought of as the sum of all the one kilogram masses making up the Earth, must be the same 
as if all the Moon’s mass were at the center. 

Weighing Rocks on the Moon 
To understand how the Earth’s gravitational pull, and the Moon’s orbital motion around the 
Earth, affect the apparent value of gravity on the surface of the Moon, we imagine having a set of 
identical rocks which we weigh with identical spring scales at different points of the Moon, as 
shown in the diagram below.  Now, a spring scale is just a spring which compresses when a 
weight is placed on it, the amount of compression of the spring is linearly proportional to the 
weight added (within the design range of the scale) and as the spring compresses it turns a 
pointer hand around a dial. The dial then records the weight.  Well, actually, to be precise, the 
dial records the force the spring is exerting on the rock: the normal force N, that is, the same 
force the rock would experience from the ground if it were just resting on the ground. 
 
So, the forces on the rocks A, B, C shown are their weights W, all directed towards the center of 
the Moon, and all equal in magnitude, the force N from the compressed springs they’re resting on 
(not shown),  and the Earth’s gravitational pull, the blue arrows in the diagram, decreasing with 
increasing distance from Earth.  Since the rocks are going round the Earth with the Moon in its 
orbit, their accelerations towards the Earth are 2

crω , this acceleration increases with distance 
from the Earth, since ω  is the same for all of them.  
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C 

(Moon’s  
Velocity) 

B 

A 

Moon 

Rock on Moon’s surface 
Earth’s gravitational pull on rock 
Rock’s mass times its acceleration towards Earth 

to Earth 

 
Remember that the Earth’s total gravitational pull on the Moon is the same as if all the Moon’s 
mass were concentrated at the Moon’s central point. If we assume rock A in the diagram is 
exactly the same distance from Earth as the center of the Moon is, it will feel the same 
gravitational pull towards Earth as a point mass at the center of the Moon, and therefore will 
accelerate towards Earth at the same rate: it will stay with the Moon, with no tendency to move 
towards or away from the Earth.  Meanwhile, in the perpendicular direction, the spring balance 
it’s resting on measures the force N with which the spring is supporting it, and this equals its 
weight W, meaning how strongly attracted it is by the Moon’s gravity. 
 
Now consider rock B on the left, closer to earth.  It will feel a stronger gravitational pull from the 
Earth, than rock A does, yet its acceleration 2rω  is less than rock A’s acceleration—r is less, and 
ω  is the same.   
 
What about ?   F ma=
 
There must clearly be some force opposing the Earth’s gravity, since B’s acceleration towards 
Earth is less than that given by the Earth’s gravity acting alone. And there is: the Moon’s gravity, 
the rock’s weight W, pulls it the other way.  But isn’t the weight balanced by the spring force N? 
The answer is, it cannot be, since we always have F ma= .  We are forced to conclude that the 
spring force N, the weight registered on the dial of the scale, is less than its true weight W.  
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The basic result is that on the part of the Moon closest to the Earth, things seem lighter: it’s 
easier to lift something, gravity is effectively lessened by the Earth’s pulling things “up”.   
 
Let’s now look at rock C.  Being further from the Earth, but going around with the Moon at the 
same angular velocity ω , its acceleration 2rω  is greater than rock A’s, but the Earth’s 
gravitational pull is weaker at the greater distance.   
 
Again, to satisfy , the Moon’s gravitational pull W on the rock at C, must be out of 
balance with the force N from the spring.  In fact, the net force from these two must point left 
(towards the Earth) to give the greater acceleration.  Therefore, the Moon’s gravitational pull 
must be stronger than the normal force from the surface.  That means that a rock at C placed on 
a spring scale will register a smaller weight—the same effect as at B!  Thing seem lighter at the 
furthest point from Earth as well! 

F ma=

 
This means that rocks at B and C will experience what amounts to an apparently lower 
gravitational pull to the Moon’s center than a rock at A.  Imagine now that the Moon were 
covered with an ocean.  The effectively stronger gravity at places like A would pull the water 
down more than the weaker effective gravity at B, C.  This is the origin of tides: the high tide is 
where “gravity” is weakest, on two opposite sides.  Of course, there is no ocean on the Moon, but 
this same argument works for the effect of the Moon’s gravity on the Earth: remember the Earth 
is also circling the Earth-Moon system center of mass.  
 

Remarks on General Relativity 
Einstein’s Parable 

In Einstein’s little book Relativity: the Special and the General Theory, he introduces general 
relativity with a parable.  He imagines going into deep space, far away from gravitational fields, 
where any body moving at steady speed in a straight line will continue in that state for a very 
long time.  He imagines building a space station out there - in his words, “a spacious chest 
resembling a room with an observer inside who is equipped with apparatus.”  Einstein points out 
that there will be no gravity, the observer will tend to float around inside the room.  

But now a rope is attached to a hook in the middle of the lid of this “chest” and an unspecified 
“being” pulls on the rope with a constant force.  The chest and its contents, including the 
observer, accelerate “upwards” at a constant rate.  How does all this look to the man in the room?  
He finds himself moving towards what is now the “floor” and needs to use his leg muscles to 
stand.  If he releases anything, it accelerates towards the floor, and in fact all bodies accelerate at 
the same rate.  If he were a normal human being, he would assume the room to be in a 
gravitational field, and might wonder why the room itself didn’t fall.  Just then he would 
discover the hook and rope, and conclude that the room was suspended by the rope.  

Einstein asks: should we just smile at this misguided soul?  His answer is no - the observer in the 
chest’s point of view is just as valid as an outsider’s.  In other words, being inside the (from an 
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outside perspective) uniformly accelerating room is physically equivalent to being in a uniform 
gravitational field.  This is the basic postulate of general relativity.  Special relativity said that all 
inertial frames were equivalent.  General relativity extends this to accelerating frames, and states 
their equivalence to frames in which there is a gravitational field.  This is called the Equivalence 
Principle. 

The acceleration could also be used to cancel an existing gravitational field—for example, inside 
a freely falling elevator passengers are weightless, conditions are equivalent to those in the 
unaccelerated space station in outer space.  

It is important to realize that this equivalence between a gravitational field and acceleration is 
only possible because the gravitational mass is exactly equal to the inertial mass.  There is no 
way to cancel out electric fields, for example, by going to an accelerated frame, since many 
different charge to mass ratios are possible.  

As physics has developed, the concept of fields has been very valuable in understanding how 
bodies interact with each other.  We visualize the electric field lines coming out from a charge, 
and know that something is there in the space around the charge which exerts a force on another 
charge coming into the neighborhood.  We can even compute the energy density stored in the 
electric field, locally proportional to the square of the electric field intensity.  It is tempting to 
think that the gravitational field is quite similar—after all, it’s another inverse square field.  
Evidently, though, this is not the case. If by going to an accelerated frame the gravitational field 
can be made to vanish, at least locally, it cannot be that it stores energy in a simply defined local 
way like the electric field.  

We should emphasize that going to an accelerating frame can only cancel a constant 
gravitational field, of course, so there is no accelerating frame in which the whole gravitational 
field of, say, a massive body is zero, since the field necessarily points in different directions in 
different regions of the space surrounding the body.  

Some Consequences of the Equivalence Principle 

Consider a freely falling elevator near the surface of the earth, and suppose a laser fixed in one 
wall of the elevator sends a pulse of light horizontally across to the corresponding point on the 
opposite wall of the elevator.  Inside the elevator, where there are no fields present, the 
environment is that of an inertial frame, and the light will certainly be observed to proceed 
directly across the elevator.  Imagine now that the elevator has windows, and an outsider at rest 
relative to the earth observes the light.  As the light crosses the elevator, the elevator is of course 
accelerating downwards at g, so since the flash of light will hit the opposite elevator wall at 
precisely the height relative to the elevator at which it began, the outside observer will conclude 
that the flash of light also accelerates downwards at g.  In fact, the light could have been emitted 
at the instant the elevator was released from rest, so we must conclude that light falls in an 
initially parabolic path in a constant gravitational field.  Of course, the light is traveling very fast, 
so the curvature of the path is small!  Nevertheless, the Equivalence Principle forces us to the 
conclusion that the path of a light beam is bent by a gravitational field. 
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The curvature of the path of light in a gravitational field was first detected in 1919, by observing 
stars very near to the sun during a solar eclipse.  The deflection for stars observed very close to 
the sun was 1.7 seconds of arc, which meant measuring image positions on a photograph to an 
accuracy of hundredths of a millimeter, quite an achievement at the time. 

One might conclude from the brief discussion above that a light beam in a gravitational field 
follows the same path a Newtonian particle would if it moved at the speed of light.  This is true 
in the limit of small deviations from a straight line in a constant field, but is not true even for 
small deviations for a spatially varying field, such as the field near the sun the starlight travels 
through in the eclipse experiment mentioned above.  We could try to construct the path by 
having the light pass through a series of freely falling (fireproof!) elevators, all falling towards 
the center of the sun, but then the elevators are accelerating relative to each other (since they are 
all falling along radii), and matching up the path of the light beam through the series is tricky.  If 
it is done correctly (as Einstein did) it turns out that the angle the light beam is bent through is 
twice that predicted by a naïve Newtonian theory.  

What happens if we shine the pulse of light vertically down inside a freely falling elevator, from 
a laser in the center of the ceiling to a point in the center of the floor?  Let us suppose the flash of 
light leaves the ceiling at the instant the elevator is released into free fall.  If the elevator has 
height h, it takes time h/c to reach the floor.  This means the floor is moving downwards at speed 
gh/c when the light hits.  

Question: Will an observer on the floor of the elevator see the light as Doppler shifted? 

The answer has to be no, because inside the elevator, by the Equivalence Principle, conditions 
are identical to those in an inertial frame with no fields present.  There is nothing to change the 
frequency of the light.  This implies, however, that to an outside observer, stationary in the 
earth's gravitational field, the frequency of the light will change.  This is because he will agree 
with the elevator observer on what was the initial frequency f of the light as it left the laser in the 
ceiling (the elevator was at rest relative to the earth at that moment) so if the elevator operator 
maintains the light had the same frequency f as it hit the elevator floor, which is moving at gh/c 
relative to the earth at that instant, the earth observer will say the light has frequency f(1 + v/c) = 
f(1+gh/c2), using the Doppler formula for very low speeds.  

We conclude from this that light shining downwards in a gravitational field is shifted to a higher 
frequency.  Putting the laser in the elevator floor, it is clear that light shining upwards in a 
gravitational field is red-shifted to lower frequency.  Einstein suggested that this prediction could 
be checked by looking at characteristic spectral lines of atoms near the surfaces of very dense 
stars, which should be red-shifted compared with the same atoms observed on earth, and this was 
confirmed.  This has since been observed much more accurately.  An amusing consequence, 
since the atomic oscillations which emit the radiation are after all just accurate clocks, is that 
time passes at different rates at different altitudes.  The US atomic standard clock, kept at 5400 
feet in Boulder, gains 5 microseconds per year over an identical clock almost at sea level in the 
Royal Observatory at Greenwich, England.  Both clocks are accurate to one microsecond per 
year.  This means you would age more slowly if you lived on the surface of a planet with a large 
gravitational field.  Of course, it might not be very comfortable.  
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General Relativity and the Global Positioning System 
Despite what you might suspect, the fact that time passes at different rates at different altitudes 
has significant practical consequences.  An important everyday application of general relativity is 
the Global Positioning System.  A GPS unit finds out where it is by detecting signals sent from 
orbiting satellites at precisely timed intervals. If all the satellites emit signals simultaneously, and 
the GPS unit detects signals from four different satellites, there will be three relative time delays 
between the signals it detects.  The signals themselves are encoded to give the GPS unit the 
precise position of the satellite they came from at the time of transmission.  With this 
information, the GPS unit can use the speed of light to translate the detected time delays into 
distances, and therefore compute its own position on earth by triangulation.  

But this has to be done very precisely!  Bearing in mind that the speed of light is about one foot 
per nanosecond, an error of 100 nanoseconds or so could, for example, put an airplane off the 
runway in a blind landing.  This means the clocks in the satellites timing when the signals are 
sent out must certainly be accurate to 100 nanoseconds a day.  That is one part in 1012.  It is easy 
to check that both the special relativistic time dilation correction from the speed of the satellite, 
and the general relativistic gravitational potential correction are much greater than that, so the 
clocks in the satellites must be corrected appropriately.  (The satellites go around the earth once 
every twelve hours, which puts them at a distance of about four earth radii.  The calculations of 
time dilation from the speed of the satellite, and the clock rate change from the gravitational 
potential, are left as exercises for the student.)  For more details, see the lecture by Neil Ashby 
here.  

In fact, Ashby reports that when the first Cesium clock was put in orbit in 1977, those involved 
were sufficiently skeptical of general relativity that the clock was not corrected for the 
gravitational redshift effect.  But—just in case Einstein turned out to be right—the satellite was 
equipped with a synthesizer that could be switched on if necessary to add the appropriate 
relativistic corrections.  After letting the clock run for three weeks with the synthesizer turned 
off, it was found to differ from an identical clock at ground level by precisely the amount 
predicted by special plus general relativity, limited only by the accuracy of the clock.  This 
simple experiment verified the predicted gravitational redshift to about one percent accuracy!  
The synthesizer was turned on and left on. 

http://www.phys.lsu.edu/mog/mog9/node9.html
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Gravity Fact Sheet 
 
Gravitational acceleration g  =  9.81 m/sec2. 
 
Newton’s Universal Gravitational Constant G = 6.67 x 10-11 N.m2/kg2.  
 
The Sun has a mass of 1.99 x 1030 kg, and a radius of 6.96 x 108 m. 
 
The Moon has a mass of 7.35 x 1022 kg,  a radius of 1738 km., and an average orbital radius of 
3.84 x 105 km., and orbital period of 27.3 days.  The orbital eccentricity is 0.055, the orbit is 
inclined at 5.15 degrees to the Earth’s orbit around the Sun. 

Planetary Data 
 
Planet Radius 

(km) 
Orbital 
Semimajor 
Axis(106km) 

Mass (kg) Orbital 
Period 

Orbital 
Eccentricity 

Inclination 
to Earth’s 
Orbit 

Mercury 2440 57.9  3.30 x 1023 88 days 0.206 7.00 
Venus 6050 108 4.87 x 1024 225 days 0.00677 3.39 
Earth 6380 150 5.97 x 1024 1 yr 0.0167 0 
Mars 3400 228 6.42 x 1023 1.88 yr 0.0934 1.85 
Jupiter 71,500 778 1.90 x 1027 11.9 0.0484 1.31 
Saturn 60,300 1430 5.69 x 1026 29.4 0.0542 2.48 
Uranus 25,600 2870 8.69 x 1025 83.8 0.0472 0.770 
Neptune 24,800 4500 1.02 x 1026 164 0.00859 0.770 
Pluto 1150 5920 1.31 x 1022 248 0.249 17.1 
 
From the AIP Physics Desk Reference, Third Edition, which gives original sources, and many 
more details. (Except Pluto mass: that’s from http://arxiv.org/abs/astro-ph/0512491 )  

Astronomical Distance Units 
1 AU = 1.5 x 1011m.    (AU = Astronomical Unit = Earth-Sun distance.) 
1 light year  =  9.46 x 1015 m. 
1 parsec = 3.09 x 1016 m. (= 3.27 ly.)  (The distance to a star that has apparent parallax 
movement caused by the Earth’s orbital motion of one second of arc amplitude.) 

Angle Measurement 
1 radian 57.3 , 1 60  (minutes),  1 60  (seconds).′ ′ ′′= ° ° = =  
 
 
 

http://arxiv.org/abs/astro-ph/0512491
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Comparing Other Planets with the Earth 
 
Planet Radius 

compared 
with 
Earth’s 

Mass 
compared 
with Earth’s 

Orbital 
Period 
compared 
with Earth’s 

g at surface 
compared 
with Earth’s 

Mercury 0.382 0.0553 0.241 0.378 
Venus 0.949 0.815 0.615 0.894 
Earth 1 1 1  1 
Mars 0.533 0.107 1.88 0.379 
Jupiter 11.2 318 11.9 2.54 
Saturn 9.41 95.2 29.4 1.07 
Uranus 4.0 14.5 83.8 0.8 
Neptune 3.9 17.2 164 1.2 
Pluto 0.19 0.0021 248 0.059 
 

And … 
 
 Radius 

compared 
with 
Earth’s 

Mass 
compared 
with Earth’s 

g at surface 
compared 
with Earth’s 

Sun 109 3.33 x 105 28gearth 

Moon 0.272 0.0123 0.166gearth 
 
 

Neutron Stars, etc. 
Neutron stars are formed when stars run out of nuclear fuel and collapse (see Wikipedia.)  They 
have masses 1.35 to 2.1 solar masses, radii between 20 and 10 km (heavier ones are smaller!).   
Gravity g at the surface is 2 x 1011 to 3 x 1012 gearth.  Stars with less mass form white dwarfs, 
about the size of the Earth, but the mass of the Sun.  Collapsing stars with masses above about 3 
solar masses form black holes. 
 

Energies 
Sun’s luminosity:  3.83 x 1026 J/sec. 
1 megaton = 4.18 x 1015 J. 

http://en.wikipedia.org/wiki/Neutron_star
http://en.wikipedia.org/wiki/Megaton
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Physics 152: Gravity Homework (and some Exam) Problems 
Michael Fowler  
 
1.  Warm-up exercise: deriving acceleration in circular motion from Pythagoras’ theorem. 
 
Imagine a cannon on a high mountain shoots a cannonball horizontally above the atmosphere at 
the right speed for it to go in a circular orbit.  In one second, the ball will fall 5 meters below a 
horizontal line, at the same time traveling v meters horizontally, as in the diagram below (where 
the distances traveled are grossly exaggerated to make clear what’s going on). 
 
Apply Pythagoras’ theorem to the right-angled triangle to establish that the appropriate speed for 
a circular orbit just above the earth’s atmosphere is given by 2 / .Ev r g=    
 
(Use the approximation that the distance traveled in one second is tiny compared to the radius of 
the earth.) 

R 

v meters 
P

R 
5 meters drop 
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2.  Properties of the Ellipse. 
 
Take a point  on the ellipse very close to P, and draw lines from the new point to the two foci.   P′
 
Use the fact that the “rope” is the same length for P, P′  to prove that a light ray from one focus 
to P will be reflected to the other focus. 

P 

C F2 F1 
A' 

B

a 

b 

A 

 
 
 
  
 
3. Kepler’s Third Law states that  has the same numerical value for all the sun’s planets. 2 /T R3

 
For circular orbits, how are R, T related if the gravitational force is proportional to 1/R?  to 1/R3? 
To R?  What can we conclude from Kepler’s Third Law about the gravitational force? 
 
4.  Television signals are relayed by synchronous satellites, placed in orbits such that they hover 
above the same spot on Earth.  Use Kepler’s Laws and data about the Moon’s orbit to find how 
far above the Earth’s surface the synchronous satellites are.  Could one be placed directly above 
Charlottesville? If you say no, explain your reasoning. 
 
5.  An evil genius puts a spherical rock (made of ordinary stone) in the earth’s orbit, but moving 
around the sun  the other way.  It collides with the earth, landing in the desert.  It is estimated 
that the crater is about the same as would have been caused by a one-megaton hydrogen bomb. 
How big was the rock? 
 
6.  Halley’s comet follows an elliptical orbit, its closest approach to the Sun is observed to be 
0.587AU.  Given that the orbital period is 76 years, what is its furthest distance from the Sun?  
What is the ellipticity of this orbit? 
 
7.  Halley’s Comet simplified. 
 
(a) A comet having a period of 64 years has closest approach to the Sun 0.5 AU.  Use Kepler’s 
Third Law, and comparison with the Earth, to figure out its farthest distance from the Sun.  
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(b) What is the ratio of its kinetic energy when nearest to the Sun to its kinetic energy at the 
farthest point? 
 
(c) How does its kinetic energy at the closest approach to the Sun compare with that of an equal 
mass in a circular orbit around the Sun at that distance?  (An approximate answer will do.) 
 
8. Galileo discovered four satellites of Jupiter: 

 
Satellite Orbital Radius in 106 km Orbital Period in Days 

Io 0.422 1.77 
Europa 0.671 3.55 

Ganymede 1.070 7.16 
Callisto 1.880 16.7 

 
The orbits are all very close to circular. 
 
(Data from http://www.ifa.hawaii.edu/~sheppard/satellites/jupsatdata.html , where 59 other 
satellites of Jupiter are listed!)  
 
Check that Kepler’s Third Law is satisfied in this system, and use these data to find the mass of 
Jupiter. 
 
9. The galaxy NGC 4258 contains a disk of matter, like a huge version of Saturn’s rings. The 
disk is not rigid, but is made up of rocks, etc., all going in approximately circular orbits.  The 
disk has inner radius 0.14 pc (parsec), outer radius 0.28 pc.  The inmost part is orbiting with a 
period of 800 yrs, the outer edge with a period of 2200 yrs. 
 
 (a)  Show that these data indicate the disk is in a gravitational field dominated by a central 
massive object (rather than, say, the field of the disk itself). 
 
  (b)  Find the approximate mass of the central object.  The densest known star cluster is about 
105 solar masses/pc3.  Could the central object be a star cluster? If not, what?  
 
 
10.  Plotting the Gravitational Field. 
 
The diagram below shows how to find the gravitational force at a particular point from a system 
of two masses.  

http://www.ifa.hawaii.edu/%7Esheppard/satellites/jupsatdata.html
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  (a)  Draw the field vector at several other points, then construct a picture of the field by drawing 
field lines: continuous lines which at each point are in the direction of the field at that point. (The 
same as “lines of force” in magnetism.) 

M 

M 

P

y 

x 

 
  (b)  Draw the field line diagram for two unequal masses, such as the Earth and the Moon.  In 
particular, make clear how the field behaves along the direct line from the Earth to the Moon. 
 
 
11.  (a) Give a brief explanation, with a diagram, of why the gravitational field inside a uniform 
spherical shell of matter is zero. 
 
(b) Suppose a very deep tunnel is drilled vertically down. What is the gravitational force felt by a 
mass of 1 kg in the tunnel at a distance r from the center of the earth, given that it is 10 Newtons 
at distance RE  = 6400 km., that is, at the earth’s surface?  (Assume the Earth’s density is 
uniform.) 
 
* The rest of this question requires knowledge of Simple Harmonic Motion. 
 
(c) Now suppose in a massive engineering project the tunnel is drilled in a straight line through 
the center of the earth and reemerges near Australia.  The air is pumped out of the tunnel, leaving 
a vacuum.  A 1 kg package is dropped from rest at one end.  How long does it take to reach the 
other end? 
 
(d)  Suppose there is an asteroid of 64 km radius,  made of material with the same density as the 
earth.  If an exactly similar tunnel is drilled through this asteroid, how long would it take a 
package to “fall” from one end to the other? 
 
12.  In the year 3000, a group of bad guys fond of living in caves have excavated a huge 
spherical cave inside the Moon.  (But it’s not centered at the center of the Moon!)  Assuming the 
Moon is a sphere of rock of uniform density, prove that the gravitational field inside the cave is 
the same everywhere.  (Hint: figure out the field for Moon with no cave, then think of the cave as 
a uniform sphere of negative mass density, and add the two contributions.) 
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13.  Imagine a tunnel bored straight through the Earth emerging at the opposite side of the globe.  
The gravitational force on a mass m in the tunnel is / EF mgr r= .   
 
  (a)  Find an expression for the gravitational potential in the tunnel.  Take it to be zero at the 
center of the Earth. 
 
  (b)  Now sketch a graph of the potential as a function of distance from the Earth’s center, 
beginning at the center but continuing beyond the Earth’s radius to a point far away.  This curve 
must be continuous.   
 
  (c)  Conventionally, the potential energy is defined by requiring it to be zero at infinity.  How 
would you adjust your answer to give this result? 
 

14.  Draw a plot of the gravitational potential along a straight line from the surface of the Earth 
to the surface of the Moon.  What is the minimum speed of a rocket fired directly from the Earth 
to the Moon to reach it?  What speed will it be moving on reaching the Moon’s surface?  (Ignore 
the Earth’s rotation and the Moon’s orbital speed—just consider two fixed masses.)  

 
15.  For this question, take the mass of Mars to be 0.1 Earth masses, and the radius of Mars to 
be 0.5 Earth radii. 
 
(a)  Given that g = 10 m/sec2 at the Earth’s surface, what is the acceleration due to gravity at the 
surface of Mars?  (Show your working.) 

 
(b) A satellite in low Earth orbit travels at 8 km/sec.  Use the value of  g on Mars you found in 
part (a) to work out how fast a satellite in a low Mars orbit will travel.  
 
(c) Calculate the escape velocity from Mars. 
 
(d)  A synchronous satellite is in a circular orbit (around the Earth) with radius 42,000 km.  It 
happens that the length of a Martian day is close to 24 hours.  What would be the orbit radius of 
a synchronous satellite circling Mars? 
 
16.  Phobos, a satellite of Mars, has a radius of 11 km and a mass of 1016 kg.   It’s a bit lumpy, 
but let’s assume it’s spherical to get a doable problem.   
 
(a) What is g on Phobos? 
 
(b) If you can jump to a height of one meter on earth, how high could you jump on Phobos? 
(Think carefully about this.)  
 
(c) Could an astronaut on a bicycle reach orbital speed on Phobos? (Guesses don’t count, I need 
to see a derivation). What about reaching escape velocity? 
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17.  Uranus has a radius four times Earth’s radius, but gravity at the surface is only 0.8gearth. 
Escape velocity from Earth is 11.2 km/sec.  Using these facts, and nothing else, find the escape 
velocity from Uranus. 
 
18. (a)  Find the orbital speed of a spaceship in low orbit around the Moon, just skimming the 
mountain tops.   
 
       (b)  Suppose the pilot suddenly increases the speed by a factor of 2 , but during the brief 
acceleration keeps the spaceship pointing the same way, that is, horizontally.  Describe the path 
the spaceship will take after the engine cuts out—does this curve have a name?. 
 
19. In deep space, an astronaut is marooned ten meters from his four-ton spacecraft. If he is 
exactly at rest relative to the craft, and there are no other gravitational fields close by, estimate 
how long it will be before he’s back on board. How fast will he be moving when he hits the craft 
(which is 5 meters in diameter)? 
 
20. The escape speed from the moon is 2.38 km/sec. Suppose you had on the moon a cannon that 
could fire shells at 2.4 km/sec.  Obviously, if you fired a shell vertically upwards, it would 
escape the moon’s gravity. But what if you fired it almost horizontally, just elevated enough so it 
cleared the mountains?  Describe its trajectory in this situation.  
 
21.  The escape velocity from Earth is 11.2 km./sec.  What is the escape velocity from the Solar 
System starting in a high parking orbit several Earth radii from Earth. (Hint: what is the Earth’s 
speed in orbit?)  On the basis of this, estimate roughly how much more fuel energy is needed to 
reach the outer planets compared with going to the Moon.  Is there a way around this problem? 

22. Imagine a fictitious moon, which we’ll call Moon1, a sphere with the same density as the 
earth, but with radius exactly one-quarter the earth’s radius:  

ρMoon1 = ρearth,  RMoon1=0.25Rearth. 

  

(a)  Taking the acceleration due to gravity gearth to be 10 m.sec−2 at the earth’s surface, what is the 
acceleration gMoon1 due to Moon1’s gravity at Moon1’s surface?  

(b)  If the escape velocity from the earth’s surface is 11 km.sec−1, what is the escape velocity 
from Moon1’s surface?  

(c)  If it takes 90 minutes for a satellite in low earth orbit (orbit radius approximately equal to 
earth radius) to go around once, how long will it take a satellite in a low Moon1 orbit (skimming 
the surface of the airless moon) to go around once?  

(d)  The real Moon has a radius close to that of Moon1 above (our Moon’s radius is 10% bigger 
than one-quarter the earth’s, we’ll neglect that difference here).  However, the real Moon has a 
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density only 60% that of the earth.  In this part, use the real Moon’s density (but Moon1’s radius) 
to recalculate the answers to (a), (b) and (c) above. 

23. Saturn’s satellite Titan has an orbit of radius 1.22 x 106 km., and a period of 15.9 days.  Use 
this information to find the mass of Saturn, then use its radius of 60,300 km to deduce 
 
  (a)  Saturn’s average density 
 
  (b)  the value of g at the surface of Saturn 
 
  (c)  the escape velocity from Saturn. 
 
24.  The furthest planet, Pluto, has a radius 20% of the Earth’s radius, and a mass only 0.2% that 
of the Earth. (Both figures are within about 5%.) 
 
  (a)  Suppose an astronaut, in full insulated gear, can jump 0.5 m high on Earth.  How high can 
she jump on Pluto?  (You don’t need to know G  to answer this!) 
 
  (b)  Assuming “air” resistance is negligible, what speed would a (rocket driven) car racing over 
a flat plane (a frozen sea) on Pluto need to be traveling to attain escape velocity?  (Escape 
velocity from Earth is 11.2 km per sec: use this fact.) 
 
  (c) Would it in fact have left the ground before reaching that speed?   Explain your answer. 
 
25.  The escape velocity from a certain planet is 10 km per sec.  The planet has a moon having 
radius one-quarter that of the planet, and density one-half that of the planet.  What is the escape 
velocity from the planet’s moon?  
 
26.  In an imaginary universe, the gravitational force decreases with distance as 1/R  instead of 
1/R2.  Suppose in that universe there is a planet the same size as Earth and also having the same 
value of g near the surface.  Would the period of a satellite in low circular orbit (just above an 
atmosphere of negligible depth) be the same?  Would the escape velocity be the same? 
 
*27.  Somewhere on the line from the Earth to the Sun there is a point, called a Lagrange point, 
such that a satellite placed there will orbit around the Sun in sync with the Earth.  In fact, there’s 
already a satellite there, it monitors the Sun continuously.  Come up with some estimate of how 
far from Earth this Lagrange point is (the Web might be helpful).  
   
28.  On a Moon mission, a spaceship is fired from Earth with just enough speed to reach the 
Moon, but aimed so that it just misses the Moon, and loops behind it, closest approach being near 
the point on the Moon’s surface furthest from Earth.  At that point, a small distance above the 
Moon’s surface, the ship fires a rocket to put it into low circular orbit around the Moon.  What is 
(approximately) the change in speed needed for this maneuver?  
 
 
Elliptic Paths to Planets and Asteroids 
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29.  The asteroid Gaspra is twice as far from the sun as we are. Assume it is in a circular orbit, 
and you are planning an expedition there.  
 
The most economical trajectory is along an elliptical orbit, whose closest approach to the  
sun, call it r1, is at the earth’s orbit, and furthest distance from the sun, r2, is at Gaspra’s orbit. 
Suppose that after leaving the atmosphere, the spaceship is rapidly speeded up to v1, then the 
engines cut out, and it follows the assigned elliptic path, arriving at Gaspra’s orbit with speed v2.   
(Neglect the earth’s gravitational pull on the spaceship.) 
 
(a) What quantities are conserved on the elliptic orbit? 
 
(b) Find two equations for v1, v2 in terms of r1, r2 and GM, where M is the mass of the sun.  
 
(c) Solve the two equations to find v1. 
 
(d) Find the speed of the earth in orbit in terms of r1 and GM.  
 
(e) Given that the earth’s speed in orbit is 30 km per sec, how much does the spaceship need to 
be speeded up relative to the earth to get to Gaspra along this ellipse? 
 
(f) Show on a diagram the earth in orbit, and the direction in which the spaceship needs to be 
moving just after leaving the earth to reach Gaspra.  Approximately, what path would the 
spaceship take if fired in the opposite direction? 
 
30.  Suppose we are sending a space probe of mass m from Earth to Jupiter by the most 
economical elliptical route. Take the radius of Jupiter’s orbit around the sun to be 5 AU.  
 
  (a) What is the total energy of the probe in the elliptical orbit? 
 
  (b) Assume it is fired from a parking orbit circling the earth far above, so the earth’s own 
gravity has a negligible effect.  Given that the earth moves in orbit at 30 km/sec, what is the 
speed of the probe relative to earth as it enters the elliptical orbit? 
 
  (c) What is its speed when it reaches Jupiter’s orbit? 
 
31.  We plan to send a probe to an asteroid which has a circular orbit of radius three times that of 
the earth’s orbit (assumed also circular).  
 
    (a)  Sketch the most efficient path, showing on your diagram the earth’s orbit and the 
asteroid’s. 
 
    (b)  If the earth travels in its orbit at 30 km per sec, at what speed relative to the earth must the 
probe be moving after it has cleared essentially all the earth’s gravitational field? 
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32.  Suppose a satellite is in low earth orbit, that is, in a circular orbit at a height of 200 km., so 
the radius of the circle is 6600 km., say.  We want to raise it to a circular orbit of twice that 
radius (so it will now be going in a circle at a height of 6800 km above the earth’s surface.)  
  
The technique is to give it two quick boosts: boost1 puts it into an elliptical orbit, where its 
furthest point from the earth’s center is exactly twice its distance of closest approach, boost2, 
delivered at the topmost point of the orbit, transfers it to a circular orbit at that radius.  
  
Use conservation of angular momentum and energy in the elliptical orbit to answer these two 
questions: 
 
  (a) By what percentage did boost1 increase its speed? 
  
  (b) By what percentage did boost2 increase its speed? 
 
 
       (b) Give a qualitative explanation of how you would fire a rocket to get back to Earth from a 
parking orbit near Mars (so you neglect Mars’ own gravity). 
 
  
33.  A “Binary” System. 
 
A very recently discovered “earthlike” planet—we’ll call it P—orbits the red dwarf star Gleise 
581, which is 20 light years from us.  
P’s sun (Gleise 581) has a mass one-third the mass of our sun.   
 
The planet P’s presence was established by detecting a wobble in the motion of Gleise 581 with 
a period of 13 days. (The wobble being caused by the orbiting planet’s gravity: think binary 
system.) 
 
(3) (a) How far is P from its sun?   
Do this as follows: for any solar type system with circular planetary orbits , 
M being the mass of that sun.   

2 3 2/ 4 /T R GMπ=

 
Use as units earth years and A.U. (distance of Earth from Sun), so for our solar system in 
these units .   2 3/ 1T R =
 
What is  in the same units (earth years and earth A.U.’s) in the Gleise 581 system?   2 /T R3

 
The wobble means P orbits its sun once in 13 days.  Write that in earth years, and deduce how 
far P is from its sun, in A.U.   
 
  (b) Given that 1 A.U = 1.5x 108 km, how fast is P moving in its (assumed circular) orbit? 
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  (c) From detecting the Doppler shift, it is found that the maximum speed of the sun Gleise 581 
in its 13-day wobble is 3 m/sec. From this, thinking of the planet P and the sun Gleise 581 as a 
“binary star” system, what is the ratio of the planet P mass to the sun (Gleise) mass? 
 
  (d) Our sun’s mass is about 300,000 earth masses.  How does the “earthlike” planet P’s mass 
compare with the earth’s mass?  (Recall Gleise has a mass one-third of our sun’s mass.) 
 
General Relativity 
 
34.  (a) State the Equivalence Principle. 
 
(b) Explain how shining light across an elevator can lead to the conclusion that light is deflected 
by gravity.  (Include a diagram.) 
 
(c) Given that light is deflected of order 1 second of arc on passing by the sun, and that the order 
of magnitude is correctly given by a simple classical approximation, how much would you 
estimate light to be deflected (order of magnitude) passing the surface of a neutron star, having 
twice the mass of the Sun and a radius of 10 km (the sun’s radius being 700,000 km)?  State 
what approximations you’re making. 
 
35. The first experimental test of General Relativity was an observation of the deflection of 
starlight by the Sun’s gravitational field (observed during a Solar eclipse).  Classically, regarding 
light as tiny particles, the deflection can be estimated within 20% or so by approximating the 
Sun’s gravitational effect as equal to gravity at the Sun’s surface acting for a period of time equal 
to that needed for the particles to travel a distance equal to the Sun’s diameter.  Calculate what 
angular deflection that would give, in seconds of arc.  General Relativity predicts that the actual 
deflection should be twice the classical value—and that was observed. 
 
36. The GPS satellites are at an altitude of about 20,000 km.  Find their speed, and figure out the 
necessary correction factors for their clocks from both Special and General Relativistic effects.  
Are these corrections important for the functioning of the system, or can they be neglected in 
practice? 
 
Miscellaneous 
 
37.   At 
http://www.enchantedlearning.com/subjects/astronomy/activities/coloring/Solarsystem.shtml you 
will find the following image: 
 

http://www.enchantedlearning.com/subjects/astronomy/activities/coloring/Solarsystem.shtml
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What’s wrong with the orbit of Pluto as shown here? 
 
38.  Mercury can be observed as a small black dot crossing the face of the Sun, this occurs about 
every ten years on average.  Since Mercury goes around in 88 days, why is this so rare?  Also, it 
only ever happens in May or November.  How would you explain this pattern? 
 
39. Some future explorer decides to fly by a neutron star, following a free-fall trajectory in which 
the spaceship loops behind the neutron star and comes back—so within the spaceship, the 
astronaut will be “weightless”.   However, if g varies significantly between the head and foot of 
the astronaut, this could have disastrous consequences. 
 
  (a)   Estimate at what rate of variation of g the astronaut is unsafe. 
 
  (b)   Assume the neutron star has a mass of two solar masses, and a radius of 10 km.  How close 
to the surface is it safe for the ship to approach?  
 
40.  The asteroid Icarus was only four million miles from earth on a recent pass.  If a collision 
took place, and Icarus fell to earth, give a ballpark estimate of the energy released in the inelastic 
collision.  Compare it with a one megaton hydrogen bomb. 
 
 
Flashlet and Applet Exercises 
 
41.   (a) Activate the Mars trip flashlet.  The initial launch speed you enter is from a high parking 
orbit (say at ten Earth radii) so that the Earth’s own gravitational field has negligible effect.  Find 
the minimum speed needed to reach Mars, sketch a picture of this most economical orbit, and 
estimate how long the trip would take.  
 
(b) Give a qualitative explanation of how you would fire a rocket to get back to Earth from a 
parking orbit near Mars (so you neglect Mars’ own gravity). 
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42.  (a) From the Fact Sheet, find the speed of Jupiter in orbit. 
 
       (b)   Open the Jupiter slingshot flashlet.  Note that you can adjust both the initial speed of the 
rocket approaching Jupiter, and how closely you begin to Jupiter’s orbit.   Imagine your rocket 
barely makes it out to Jupiter’s orbit, so has no speed left—but you’ve perfectly timed it to 
derive maximum benefit from the slingshot effect.  Could Jupiter give it enough of a boost to get 
it thrown out of the solar system?   Justify your answer:  what does the rocket’s orbit look like as 
seen by someone on Jupiter? 
 
43. Open the Newtonian Mountain applet.  The height of the mountain (Newton’s own drawing) 
is about 10% of the Earth’s diameter. This happens to be approximately the maximum height 
reached by an ICBM on a trajectory going half way around the world, so the cannonball path is 
the second half of an ICBM trajectory. 
   
  (a)  Experiment with the applet to find the speed at the top of an ICBM trajectory compared 
with speed in a circular orbit at the same height.   
 
  (b)  If the ICBM is launched with an engine that cuts out as it leaves the atmosphere, what is the 
approximate speed as the engine cuts out? (Answer in km/sec – I apologize for the applet being 
in mph. Take the radius of the Earth to be 6400 km., and neglect the thickness of the 
atmosphere.) 
 
  (c) When the engine cuts out, what is the angle between the trajectory and the horizontal?  
(Hint: use conservation of angular momentum.) 
 
 
 
 
 
 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/Slingshot.htm
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/newt/newtmtn.html
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