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Ideal Gas Thermodynamics: Specific Heats, Isotherms, 
Adiabats 
Michael Fowler 7/15/08 

Introduction: the Ideal Gas Model, Heat, Work and Thermodynamics 

The Kinetic Theory picture of a gas (outlined in the previous lecture) is often called the 

Ideal Gas Model.  It ignores interactions between molecules, and the finite size of 

molecules. In fact, though, these only become important when the gas is very close to the 

temperature at which it become liquid, or under extremely high pressure.  In this lecture, 

we will be analyzing the behavior of gases in the pressure and temperature range 

corresponding to heat engines, and in this range the Ideal Gas Model is an excellent 

approximation.  Essentially, our program here is to learn how gases absorb heat and turn 

it into work, and vice versa.  This heat-work interplay is called thermodynamics.  

 

Julius Robert Mayer was the first to appreciate that there is an equivalence between heat 

and mechanical work. The tortuous path that led him to this conclusion is described in an 

earlier lecture, but once he was there, he realized that in fact the numerical equivalence—

how many Joules in one calorie in present day terminology—could be figured out easily 

from the results of some measurements of gas specific heat by French scientists.  The key 

was that they had measured specific heats both at constant volume and at constant 

pressure.  Mayer realized that in the latter case, heating the gas necessarily increased its 

volume, and the gas therefore did work in pushing to expand its container.  Having 

convinced himself that mechanical work and heat were equivalent, evidently the extra 

heat needed to raise the temperature of the gas at constant pressure was exactly the work 

the gas did on its container.  (Historical note: although he did the work in 1842, he didn’t 

publish until 1845, and at first miscalculated—but then gave a figure within 1% of the 

correct value of 4.2 joules per calorie.) 

 

The simplest way to see what’s going on is to imagine the gas in a cylinder, held in by a 

piston, carrying a fixed weight, able to move up and down the cylinder smoothly with 

negligible friction.  The pressure on the gas is just the total weight pressing down divided 

by the area of the piston, and this total weight, of course, will not change as the piston 

moves slowly up or down: the gas is at constant pressure.  

 

http://galileo.phys.virginia.edu/classes/252/kinetic_theory.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/HeatIndex.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/CarnotEngine.pdf
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The Gas Specific Heats CV and CP 

Consider now the two specific heats of this same sample of gas, let’s say one mole:  

 

Specific heat at constant volume, 
VC  (piston glued in place), 

 

Specific heat at constant pressure, 
PC  (piston free to rise, no friction). 

 

In fact, we already worked out 
VC  in the Kinetic Theory lecture: at temperature T, recall 

the average kinetic energy per molecule is 3
2
kT , so one mole of gas—Avogadro’s 

number of molecules—will have total kinetic energy, which we’ll label internal energy,  

 
3 3

int 2 2
.AE kT N RT    

 

(In this simplest case, we are ignoring the possibility of the molecules having their own 

internal energy: they might be spinning or vibrating—we’ll include that shortly).   

 

That the internal energy is 3
2

RT  per mole immediately gives us the specific heat of a 

mole of gas in a fixed volume, 

 
3
2VC R  

 

that being the heat which must be supplied to raise the temperature by one degree. 

 

However, if the gas, instead of being in a fixed box, is held in a cylinder at constant 

pressure, experiment confirms that more heat must be supplied to raise the gas 

temperature by one degree.  

 

As Mayer realized, the total heat energy that must be supplied to raise the temperature of 

the gas one degree at constant pressure is 3
2
k  per molecule plus the energy required to 

lift the weight.  

Gas 

Moveable  
piston 

Gas at constant pressure 

http://galileo.phys.virginia.edu/classes/252/kinetic_theory.html
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The work the gas must do to raise the weight is the force the gas exerts on the piston 

multiplied by the distance the piston moves. 

 

If the area of piston is A, then the gas at pressure P exerts force PA.  

 

If on heating through one degree the piston rises a distance Δh the gas does work 

 
.PA h P V    

 

Now, for one mole of gas, PV RT , so at constant P 

 

.P V R T    

 

Therefore, the work done by the gas in raising the weight is just R T , the specific heat 

at constant pressure, the total heat energy needed to raise the temperature of one mole by 

one degree, 

 

.P VC C R   

 

In fact, this relationship is true whether or not the molecules have rotational or vibrational 

internal energy.  (It’s known as Mayer’s relationship.)  For example, the specific heat of 

oxygen at constant volume 

 

  5
2

2
OVC R  

 

and this is understood as a contribution of 3
2

R  from kinetic energy, and R from the two 

rotational modes of a dumbbell molecule (just why there is no contribution form rotation 

about the third axis can only be understood using quantum mechanics).  The specific heat 

of oxygen at constant pressure 

 

  7
2

2
OPC R . 

 

It’s worth having a standard symbol for the ratio of the specific heats: 

 

.P

V

C

C
  

Tracking a Gas in the (P, V) Plane: Isotherms and Adiabats 

An ideal gas in a box has three thermodynamic variables: P, V, T.  But if there is a fixed 

mass of gas, fixing two of these variables fixes the third from PV nRT  (for n moles). 

In a heat engine, heat can enter the gas, then leave at a different stage.  The gas can 

expand doing work, or contract as work is done on it.  To track what’s going on as a gas 
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engine transfers heat to work, say, we must follow the varying state of the gas.  We do 

that by tracing a curve in the (P, V) plane.  

 

Supplying heat to a gas which consequently expands and does mechanical work is the 

key to the heat engine.  But just knowing that a gas is expanding and doing work is not 

enough information to follow its path in the (P, V) plane.  The route it follows will 

depend on whether or not heat is being  supplied (or taken away) at the same time.  There 

are, however, two particular ways a gas can expand reversibly—meaning that a tiny 

change in the external conditions would be sufficient for the gas to retrace its path in the 

(P, V) plane backwards.  It’s important to concentrate on reversible paths, because as 

Carnot proved and we shall discuss later, they correspond to the most efficient engines.  

The two sets of reversible paths are the isotherms and the adiabats. 

 

Isothermal behavior:   the gas is kept at constant temperature by allowing heat flow 

back and forth with a very large object (a “heat reservoir”) at temperature T.  From 

PV nRT , it is evident that for a fixed mass of gas, held at constant T  but subject to 

(slowly) varying pressure, the variables P, V will trace a hyperbolic path in the (P, V) 

plane.   

 

This path, 
1PV nRT , say is called the isotherm at temperature T1.  Here are two 

examples of isotherms: 

Isotherms PV  = RT  for One Mole at 273K, 373K
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Adiabatic behavior:   “adiabatic” means “nothing gets through”, in this case no heat gets 

in or out of the gas through the walls.  So all the work done in compressing the gas has to 

go into the internal energy 
intE . 
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As the gas is compressed, it follows a curve in the (P, V) plane called an adiabat.  To see 

how an adiabat differs from an isotherm, imagine beginning at some point on the blue 

273K isotherm on the above graph, and applying pressure so the gas moves to higher 

pressure and lower volume. Since the gas’s internal energy is increasing, but the number 

of molecules is staying the same, its temperature is necessarily rising, it will move 

towards the red curve, then above it.  This means the adiabats are always steeper than 

the isotherms.   

 

In the diagram below, we’ve added a couple of adiabats to the isotherms: 

 

Isotherms and Adiabats for One Mole
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Adiabatic Compression 

Cylinder of insulating material 

Gas 
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Equation for an Adiabat 

What equation for an adiabat corresponds to 
1PV nRT  for an isotherm?   

 

On raising the gas temperature by T , the change in the internal energy—the sum of 

molecular kinetic energy, rotational energy and vibrational energy (if any), 

 

int .VE C T    

 

This is always true: whether or not the gas is changing volume is irrelevant, all that 

counts in 
intE  is the sum of the energies of the individual molecules (assuming as we do 

here that attractive or repulsive forces between molecules are negligible). 

 

In adiabatic compression, all the work done by the external pressure goes into this 

internal energy, so 

.VP V C T     

 

(Compressing the gas of course gives negative ,V  positive 
intE .)  

 

 

To find the equation of an adiabat, we take the infinitesimal limit 

 

VPdV C dT   

 

Divide the left-hand side by PV, the right-hand side by nRT (since ,PV nRT that’s OK) 

to find 

.
V

R dV dT

C V nT
   

 

Recall now that ,P VC C nR   and / .P VC C   It follows that 

 

1.P V

V V

C CnR

C C



    

Hence  

 1 dV dT

V T
     

and integrating 

 ln 1 ln const.T V    

 

from which the equation of an adiabat is 

 
1  const.TV    
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From PV nRT , the P, V equation for an adiabat can be found by multiplying the left-

hand side of this equation by the constant PV/T,  giving 

 

 const.PV     for an adiabat, 

 

where 5
3   for a monatomic gas, 7

5  for a diatomic gas. 
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