
Coherent States of the Simple Harmonic Oscillator 
Michael Fowler, 10/14/07 

What is the Wave Function of a Swinging Pendulum? 
Consider a macroscopic simple harmonic oscillator, and to keep things simple assume there are 
no interactions with the rest of the universe.  We know how to describe the motion using 
classical mechanics: for a given initial position and momentum, classical mechanics correctly 
predicts the future path, as confirmed by experiments with real (admittedly not perfect) systems.  
But from the Hamiltonian we could also write down Schrödinger’s equation, and from that 
predict the future behavior of the system.  Since we already know the answer from classical 
mechanics and experiment, quantum mechanics must give us the same result in the limiting case 
of a large system. 
 
It is a worthwhile exercise to see just how this happens.  Evidently, we cannot simply follow the 
classical method of specifying the initial position and momentum—the uncertainty principle 
won’t allow it.  What we can do, though, is to take an initial state in which the position and 
momentum are specified as precisely as possible. Such a state is called a minimum uncertainty 
state (the details can be found in my earlier lecture on the Generalized Uncertainty Principle). 
 
In fact, the ground state of a simple harmonic oscillator is a minimum uncertainty state. This is 
not too surprising—it’s just a localized wave packet centered at the origin.  The system is as 
close to rest as possible, having only zero-point motion.  What is surprising is that there are 
excited states of the pendulum in which this ground state wave packet swings backwards and 
forwards indefinitely, a quantum realization of the classical system, and the wave packet is 
always one of minimum uncertainty.  Recall that this doesn’t happen for a free particle on a 
line—in that case, an initial minimal uncertainty wave packet spreads out because the different 
momentum components move at different speeds.  But for the oscillator, the potential somehow 
keeps the wave packet together, a minimum uncertainty wave packet at all times. These 
remarkable quasi-classical states are called coherent states, and were discovered by Schrodinger 
himself.  They are important in many quasi-classical contexts, including laser radiation. 
 
Our task here is to construct and analyze these coherent states and to find how they relate to the 
usual energy eigenstates of the oscillator. 

Classical Mechanics of the Simple Harmonic Oscillator 
To define the notation, let us briefly recap the dynamics of the classical oscillator: the constant 
energy is 
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The classical motion is most simply described in phase space, a two-dimensional plot in the 
variables ( .  In this space, the point ),m x pω ( ),m x pω  corresponding to the position and 
momentum of the oscillator at an instant of time moves as time progresses at constant angular 
speed ω  in a clockwise direction around the circle of radius 2mE  centered at the origin. 
 
(Note: phase space is usually defined in terms of the variables ( ),x p , but in describing the 

simple harmonic oscillator, the pair ( ),m x pω are more convenient.) 
 
This motion is elegantly described by regarding the two-dimensional phase space as a complex 
plane, and defining the dimensionless complex variable 
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The time evolution in phase space is simply 
 

( ) 0
i tz t z e ω−= . 

 
The particular choice of (quantum!) scaling factor in defining z amounts to defining the unit of 
energy as ω= , the natural unit for the oscillator:  it is easy to check that if the classical energy 

( )1
2E n ω= + =  then the dimensionless 2z  is simply the number 1

2n +  (which is of course very 
large, so the ½ is insignificant).  

Minimum Uncertainty Wave Packets 
We established in the lecture on the Generalized Uncertainty Principle that any minimum 
uncertainty one-dimensional wave function (so / 2p xΔ ⋅Δ = = ) for a particle must satisfy the 
linear differential equation (here ) ˆ /p i d d= − = x
 

( ) ( ) ( ) ( )ˆ ˆp p x x x xψ λ ψ− = −  
 
where , ,x p λ  are constants, and λ  is pure imaginary.  The equation is easy to solve: any 
minimum uncertainly one-dimensional wave function is a Gaussian wave packet, having 
expectation value of momentum p , centered at x  and having width ( )2 / 2x iλΔ = −= .   ( xΔ  

is defined for a state ψ  by ( ) ( )22x x xψ ψΔ = − .)  
 
That is to say, the minimum uncertainly solution is: 
 

( ) ( ) ( ) ( )2 2 2/ 2 / 4/ /i x x x x xi p x i p xx Ce e Ce eλψ − − −= === = Δ  
 
with C the normalization constant. 
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In fact, the simple harmonic oscillator ground state 
1
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=
 is just such a 

minimum uncertainty state, with  
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Furthermore, it is easy to see that the displaced ground state  ( )20 /2

0 0( ) m x xx x Ce ωψ − −− = = , with  

0x x= , and writing the normalization constant ( )
1

4/mω π C== , must also be a minimum 
uncertainty state, with the same imλ ω= .  (It satisfies the necessary differential equation.)  Of 
course, in contrast to the ground state, this displaced state is no longer an eigenstate of the 
Hamiltonian, and will therefore change with time.  
 
(Both these states, 0x x=  and 0x = , have the same spread in x-space ( )2 / 2x mωΔ = = , and 

the same spread in p-space, the only difference in the p direction being a phase factor 0 /ip xe = for 
the displaced state.) 
 
What about the higher eigenstates of the oscillator Hamiltonian? They are not minimally 
uncertain states—for the nth state, , as is easily checked using / 2p x nΔ ⋅Δ = =

( ) ( )2 21 1
2 2/ 2p m k x n1

2 ωΔ = Δ ∼ = .  So, if we construct a minimally uncertain higher energy state, 
it will not be an eigenstate of the Hamiltonian. 
 
Exercise: prove  for the nth energy eigenstate. (Hint: use creation and annihilation 
operators.) 

/ 2p x nΔ ⋅Δ = =

Eigenstates of  the Annihilation Operator are Minimum Uncertainty States 
 
Notation:  We’ll write  

( ) ( )0 00 , 0 .x t x p t= = = = p  
 

 
We restrict our attention here to those minimum uncertainty states having the same spatial width 
as the oscillator ground state—these are what we need, and these are the ones we’ll show to be 
eigenstates of the annihilation operator.   (Actually, more general minimum uncertainty states, 
known as squeezed states, are also interesting and important, but we’ll not consider them here.) 
 
Suppose that at t = 0 the oscillator wave function is the minimum uncertainty state 
 

( ) ( ) ( )2 2
0 00 0/2 /2/ /, 0 i x x m x xip x ip xx t Ce e Ce eλ ωψ − −= = == == = −  
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centered at ( )00 ,p m xω  in phase space (as defined above for the classical oscillator), and with 
imλ ω= to give it the same spatial extent as the ground state. 

 
From the preceding section, this ( ,0)xψ  satisfies the minimum uncertainty equation 
 

( ) ( ) ( ) ( )0 0ˆ ˆ,0 ,0 .p p x im x x xψ ω ψ− = −  
 

Rearranging this equation (and multiplying by –i) shows it in a different light: 
 

( ) ( ) ( ) ( )0 0ˆ ˆ ,0 ,0m x ip x m x ip xω ψ ω ψ+ = + . 
 

This is an eigenvalue equation!  The wave packet ( ),0xψ  is an eigenstate of the operator 

 with eigenvalue (( ˆ ˆm x ipω + ) )0 0m x ipω + .  It is not, of course, an eigenstates of either or p̂
x̂ taken individually.  
 
Furthermore, the operator  is just a constant times the annihilation operator —recall  ( ˆ ˆm x ipω + ) â
 

( )1ˆ ˆ .
2

a m x
m

ω
ω

= +
=

ˆip  

 
Therefore, this minimally uncertain initial wave packet ( ),0xψ  is an eigenstate of the 

annihilation operator , with eigenvalue â ( )0 0 / 2m x ip mω ω+ = .  (By the way, it’s ok for  to 
have complex eigenvalues, because  is not a Hermitian operator.) 

â
â

 
We can now make the connection with the complex plane representation of the classical 
operator: the eigenvalue ( )0 0 / 2m x ip mω ω+ =  is precisely the parameter labeling the 
position of the classical operator in phase space in natural dimensionless units! 

0z

 
That is to say, a minimum uncertainty oscillator wave packet 
 

( ) ( )200 /2/, 0 m x xip xx t Ce e ωψ − −= = ==  
 

centered at (  in phase space and having the same spatial extent as the ground state, is 
an eigenstate of the annihilation operator 

)0 0,m x pω

  
( ) ( )0ˆ , 0 , 0a x t z x tψ ψ= = = . 

 
 with eigenvalue the position of its center in phase space, that is, 
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Time Development of the Minimal Wave Packet 
Turning now to the time development of the state, it is convenient to use the ket notation  
 

( ) 0 0, 0 ,x t xψ = = p  
 

with ,x p  denoting a minimum uncertainly wave packet (with the same spatial width as the 
ground state) having those expectation values of position and momentum. 
 
The time development of the ket, as usual, is given by 
 

( ) /
0 0, ,iHtx t e x pψ −= = . 

 
We shall show that ( ),x tψ  remains an eigenstate of the annihilation operator for all times t: it 
therefore continues to be a minimum uncertainty wave packet!  (And, of course, with constant 
spatial extent.) 
 
The key point in establishing this is that the annihilation operator itself has a simple time 
development in the Heisenberg representation,  
  

( ) / /ˆ ˆ ˆiHt iHt i ta t e ae ae ω− −= == = . 
 

To prove this, consider the matrix elements of ( )â t between any two eigenstates n of the 
Hamiltonian 
 

( )1
2H n n nω= + =  

so 

( ) ( ) ( )1 1
2 2/ /ˆ ˆ 1i m t i n t i tm a t n e m a n e n a n eω ω ˆ ω+ − + −= == = = = − . 

 
Since the only nonzero matrix elements of the annihilation operator ˆm a n  are for 1m n= − , 
and the energy eigenstates form a complete set, this simple time dependence is true as an 
operator equation 
   

( ) / /ˆ ˆ ˆiHt iHt i ta t e ae ae ω− −= == = . 
 
It is now easy to prove that 
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( ) /
0 0, ,iHtx t e x pψ −= =  

 
is always an eigenstate of : â
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Therefore the annihilation operator, which at t = 0 had the eigenvalue 
 

( )0 0 0 / 2z m x ip mω ω= + = , 
 
corresponding to a minimal wave packet centered at ( )0 0,m x pω  in phase space, evolves in time 
t to another minimal packet (because it’s still an eigenstate of the annihilation operator), and 
writing  
 

( ) ( ) /
0 0, ,iHtx t p t e x p−= = , 

 
the new eigenvalue of  â
 

( )
( ) ( )( ) ( ) ( )0 0 0 .

2 2
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ω ω
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Therefore, the center of the wave packet in phase space follows the classical path in time.  This is 
made explicit by equating real and imaginary parts: 
 

( ) ( )
( )

0 0

0 0

cos / sin ,

cos sin .

x t x t p m

p t p t m x t

tω ω ω

ω ω ω

= +

= −
 

 
So we’ve found Schrödinger’s “best possible” quantum description of a classical oscillator. 

A Remark on Notation 
We have chosen to work with the original position and momentum variables, and the complex 
parameter expressed as a function of those variables, throughout.  We could have used the 
dimensionless variables introduced in the lecture on the simple harmonic oscillator,  
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/ / ,x b x mξ ω= = =  / /bp p mπ ω= == = , ( )ˆˆ ˆ / 2.a iξ π= +   This would of course also give 

( ) / 2,z iξ π= +  a more compact representation, but one more thing to remember.  
 
It’s also common to denote the eigenstates of  by â ,α   ˆ ,a α α α=  very elegant, but we’ve 
used z to keep reminding ourselves that this eigenvalue, unlike most of those encountered in 
quantum mechanics, is a complex number. Finally, some use the dimensionless variables 

( )2 / , 1/ 2 ,X m x P mω= == = pω  differing from ,  by a factor of 2.ξ π   The eigenvalue 

equation for the annihilation operator is very neat in this notation: ( )ˆ .a z X iP z= +  We’ve 
avoided it, though, because our recommended textbook, Shankar, uses X, P for the ordinary 
position and momentum operators.  

The Translation Operator 
It’s worth repeating the exercise for the simple case of the oscillator initially at rest a distance 0x  
from the center.  This gives a neat tie-in with the translation operator (defined below). 
 
Let us then take the initial state to be 
 

( ) ( ) ( )
2

0 /2
0 0,0 m x xx Ce x xωψ ψ− −= == −  

 
where ( )0 xψ  is the ground state wave function—so we’ve moved the packet to the right by 0x .  
 
Now do a Taylor series expansion (taking 0x  to be the variable!): 

( ) ( ) ( ) ( )

( )0

2 2
0

0 0 0 0 0 02

0

2!

.
dx
dx

xd dx x x x x x
dx dx

e x

ψ ψ ψ ψ

ψ
−

− = − + −

=

…
 

 

It’s clear from this that the translation operator 0
dx
dxe

−
  shifts the wave function a distance 0x  to 

the right. 
 
Since , the translation operator can also be written as , and from this it can be 
expressed in terms of , since 

ˆ /p i d d= − = x 0 ˆ /ix pe− =

†ˆ ˆ,a a
 

( ) ( )†1 1ˆ ˆ ˆ ˆ, ,
2 2

a m x ip a m x
m m

ω ω
ω ω

= + = −
= =

ˆ ˆip  

 
(  being Hermitian) so  ˆ ˆ,p x

( )†ˆ ˆ
2
m ˆp i aω a= −
= . 
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Therefore the displaced ground state wave function can be written 
 

( ) ( )
( ) ( )
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0

†
0
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for real 0 0 / 2z x mω= = , since 0p  is zero for this initial state (the wave function is real). 
 
In the ket notation, we have established that the minimal uncertainty state centered at x0, and 
having zero expectation value for the momentum, is 
 

( )†
0 ˆ ˆ

0 , 0 0,0 .z a ax e −
=  

 
But it’s not exactly obvious that this is an eigenstate of  with eigenvalue z0!  (As it must be.)   â
 
It’s worth seeing how to prove that just from the properties of the operators—but to do that, we 
need a couple of theorems concerning exponentials of operators given in the Appendix.  
 
First, if the commutator [A,B] commutes with A and B, then [ ]1

2 , .A BA B A Be e e e−+ =   This result 
simplifies the right hand side of the above equation, for 
 

( )† 2 ††0 00 0

2 †
0 0

ˆ ˆ ˆ ˆ, / 2ˆ ˆ

ˆ/ 2

0,0 0,0

0,0

z a a z a az a z a

z z a

e e e e

e e

⎡ ⎤− −− ⎣ ⎦

−

=

=
 

 
where we have used 0 ˆ 0,0 0,0 .z ae− =  
This is simpler, but it’s still not obvious that we have an eigenstate of : we need the 
commutator .   

â
†

0 ˆˆ, z aa e⎡ ⎤
⎣ ⎦

 
The second theorem we need is: if the commutator of two operators  [ ],A B = c  itself  
commutes with A and B, then 

, .B BA e ceλ λλ⎡ ⎤ =⎣ ⎦  
 
(This is easily proved by expanding the exponential—see the Appendix.) 
 
Applying this to our case, 

† †
0 0ˆ ˆ

0ˆ, .z a z aa e z e⎡ ⎤ =⎣ ⎦  
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It follows immediately that 
2 †

0 0 ˆ/ 2 0,0z z ae e−  is indeed an eigenstate of  with eigenvalue â

0 0 / 2z x mω= = .  (It must also be correctly normalized because the translation 
( )†

0 ˆ ˆ
0 , 0 0,0z a ax e −

=  is a unitary operation for real  z0.)   
  
How do we generalize this translation operator to an arbitrary state, with nonzero ,x p ? 
Thinking in terms of the complex parameter space z, we need to be able to move in both the x 
and the p directions, using both  and ˆ /p i d d= − = x ˆ /x i d dp= = .  This is slightly tricky since these 
operators do not commute, but their commutator is just a number, so (using the theorem proved 
in the Appendix) this will only affect the overall normalization.   
 
Furthermore, both and p̂ x̂  are combinations of , so for the generalization of †ˆ ˆ,a a 0 ˆ /i x pe− = from 
real 0x  to complex  z to be unitary, it must have an antihermitian combination of in the 
exponent—a unitary operator has the form , where H is Hermitian, so iH is antihermitian.   

†ˆ ˆ,a a
iHU e=

 
We are led to the conclusion that 
 

( )† *ˆ ˆ
, 0za z ap x e z−

= = , 
 
conveniently labeling the coherent state using the complex parameter z of its center in phase 
space.  Since this generalized translation operator is unitary, the new state is automatically 
correctly normalized. 

How Do These States Relate to the Energy Eigenstates? 
The equation above suggests the possibility of representing the displaced state z  in the 

standard energy basis n .  We can simplify with the same trick used for the spatial displacement 

case in the last section, that is, the theorem [ ]1
2 ,A BA B A Be e e e−+ =  where now : † *ˆ ˆ,A za B z a= = −

 
2 2† * † * †/ 2 / 2ˆ ˆ ˆ ˆ ˆ0 0z zza z a za z a zaz e e e e e e− −− −= = = 0  

 
using 

* ˆ 0 0z ae− =  since ˆ 0 0a = . 
 
It is now straightforward to expand the exponential: 
 

( )2 2†

2†
/ 2 / 2ˆ †0 1

2!
z zza

za
z e e e za− −

⎛ ⎞
⎜ ⎟= = + + +
⎜ ⎟
⎝ ⎠

… 0  

 
and recalling that the normalized energy eigenstates are  
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( )†

0
!

n
a

n
n

=  

we find 
2 2 3

/ 2 0 1 2 3
2! 3!

z z zz e z− ⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
… . 

 
 
Exercise: Check that this state is correctly normalized, and is an eigenstate of . â

Time Development of an Eigenstate of a Using the Energy Basis 
Now that we have expressed the eigenstate z  as a sum over the eigenstates n  of the 
Hamiltonian, finding its time development in this representation is straightforward.  
 
Since ( ) in tn t e nω−= , 
 

( )
2

0

2 2 3 3
/ 2 0 0

00 1 2 3
2! 3!

i t i t
z i t z e z ez t e z e

ω ω
ω

− −
− −⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

…+  

 
which can be written 

( )
2 †

0 0/ 2 ˆ 0 ,
i tz z e az t e e
ω−−=  

 
equivalent to the result ( ) 0

i tz t z e ω−=  derived earlier. 

Some Properties of the Set of Eigenstates of a 
In quantum mechanics, any physical variable is represented by a Hermitian operator. The 
eigenvalues are real, the eigenstates are orthogonal (or can be chosen to be so for degenerate 
states) and the eigenstates for a complete set, spanning the space, so any vector in the space can 
be represented in a unique way as a sum over these states. 
 
The operator  is not Hermitian.  Its eigenvalues are all the numbers in the complex plane.  The 
eigenstates belonging to different eigenvalues are never orthogonal, as is immediately obvious 
on considering the ground state and a displaced ground state.  The overlap does of course 
decrease rapidly for states far away in phase space.  

â

 
The state overlap can be computed using 

2 †/ 2 ˆ 0z zaz e e−= : 
 

2 2* †/ 2 / 2ˆ ˆ0 0w zw a zaw z e e e e− −=  
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and we can then switch the operators using the theorem from the Appendix 
* ˆ ˆ,w a zae e− †

[ ],A BB A A Be e e e e−= , then since †ˆ ˆ0 0a a= = 0, we’re left with 
 

2 2* / 2 / 20 0w zw zw z e e e− −= ,  
 
from which 

22 w zw z e− −= . 
 

Finally, using
2 2 3

/ 2 0 1 2 3
2! 3!

z z zz e z− ⎛
= + + + +⎜

⎝ ⎠
…
⎞
⎟ ,  we can construct a unit operator 

using the z , 
dxdyI z z
π

= ∫∫  

 
where the integral is over the whole complex plane z x iy= +  (this x is not, of course, the 
original position x, recall for the wave function just displaced along the axis 0 0 / 2z x mω= = ).  
Therefore, the z  span the whole space. 

Appendix: Some Exponential Operator Algebra 
Suppose that the commutator of two operators A, B   
 

[ ], ,   A B c=  
where c commutes with A and B, usually it’s just a number, for instance 1 or . i=
Then 

( ) ( )
( ) ( )

2 2 3 3

2 3 2

, ,1 / 2! / 3!

/ 2! 2 / 3! 3

.

B

B

A e A B B B

c Bc B c

ce

λ

λ

λ λ λ

λ λ λ

λ

⎡ ⎤⎡ ⎤ = + + + +⎣ ⎦ ⎣ ⎦

= + + +

=

…

…  

 
That is to say, the commutator of A with Beλ  is proportional to Beλ  itself.   
 
That is reminiscent of the simple harmonic oscillator commutation relation † †[ , ]H a aω= =  
which led directly to the ladder of eigenvalues of H separated by ω= .  Will there be a similar 
“ladder” of eigenstates of A in general?  
 
Assuming A (which is a general operator) has an eigenstate a  with eigenvalue a,  
 

.A a a a=  
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Applying[ , ]BA e ce Bλ λλ=  to the eigenstate a : 
 

( ) .B B BAe a e A a ce a a c aλ λ λλ λ= + = +  
 
Therefore, unless it is identically zero, Be aλ is also an eigenstate of A, with eigenvalue .a cλ+  
We conclude that instead of a ladder of eigenstates, we can apparently generate a whole 
continuum of eigenstates, since λ  can be set arbitrarily!   
 
To find more operator identities, premultiply [ , ]B BA e ceλ λλ=  by Be λ−  to find: 
 

[ ],
.

B Be Ae A A B
A c

λ λ λ
λ

− = +

= +
 

 
This identity is only true for operators A, B whose commutator c is a number. (Well, c could be 
an operator, provided it still commutes with both A and B). 
 
Our next task is to establish the following very handy identity, which is also only true if [A,B] 
commutes with A and B: 

[ ]1
2 , .A BA B A Be e e e−+ =  

 
The proof (due to Glauber, given in Messiah) is as follows: 
 
Take ( ) ,Ax Bxf x e e=  

( )( )
( ) [ ]( )

/

, .

Ax Bx Ax Bx

Bx Bx

df dx Ae e e e B

f x e Ae B

f x A x A B B

−

= +

= +

= + +

 

 
It is easy to check that the solution to this first-order differential equation equal to one at x = 0 is 
 

( ) ( ) [ ]21
2 ,x A Bx A Bf x e e+=  

 
so taking x = 1 gives the required identity, [ ]1

2 , .A BA B A Be e e e−+ =  
 
It also follows that [ ],A BB A A Be e e e e−=  provided—as always—that [A, B] commutes with A and B.  
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