
2. Random Numbers and

Simulations

2.1. Introduction

A weather forecast.
Source: NOAA

Some of the world’s most powerful computers and most sophisticated

software exist for the purpose of telling you whether you need to

carry an umbrella tomorrow. Weather predictions demand extreme

computing power. These predictions are made by simulating the earth’s

atmosphere. They begin with current weather conditions (temperature,

pressure, humidity, wind speed) at many locations around the world

and at different heights within the atmosphere. Then they approximate

the atmosphere by pretending it’s made of millions of discrete “cells”,

and the behavior of each of these cells is simulated as it changes over

time. Simulations like this allow us to find approximate answers to

problems that would be difficult or impossible to solve exactly.

Computer-generated trees.
Source: Wikimedia Commons

Computer simulations often make use of random numbers. If you’ve

ever played a video game (or watched a movie with computer-generated

special effects) you’ve seen images made with the help of random

numbers. The trees in a video game forest probably aren’t drawn by

hand. They’re generated from a recipe that uses random numbers to

decide where to put the branches and leaves, how tall the tree is, and

its location in the forest.

Simulations can let us take random numbers, combine them with a few

simple rules that describe how neighboring components interact with

each other, and turn that into a prediction about the complex behavior

of a large system.

A computer simulation of twisted
magnetic fields in the Sun’s
atmosphere.
Source: Tim Sandstrom, NASA/Ames

In this chapter we’ll learn how to create programs that use random

numbers to simulate processes in the real world.

http://www.noaa.gov
https://commons.wikimedia.org/wiki/File:Dragon_trees.jpg
http://www.nas.nasa.gov/SC14/demos/demo21.html


56 practical computing for science and engineering

2.2. The Code Development Dance

Dance in the Moonbeam by Theodor
Kittelsen.
Source: Wikimedia Commons

In the last chapter we saw how to create programs using an editor and

a compiler. The process of creating a program is usually a loop, like

the loops we created inside our programs. We start out by writing

some statements in the C language and saving them into a file, then we

compile the file and run the resulting binary version of the program.

If the program doesn’t do what we want it to do, we go back and edit

some more, then try again until we have a working program. I call this

process “The Code-Development Dance” (see Figure 2.1).

Figure 2.1: The Code-Development
Dance

No matter how far you go in programming, you’ll still follow this same

process while developing programs. Programmers often refer to the instruc-
tions in a computer program as “code”.
The C language statements you’ve
written are called “source code” and the
binary files created by the compiler are
called “binary code”

In the exercises that follow, we’ll be working on two new programs. In

each case, we’ll start out with a simple version of the program, then

make improvements. Each time we change something, we’ll go through

the process of editing our program, compiling it, and running it. Refer

back to Figure 2.1 if you need help.

2.3. Using the rand Function
Take a look at Program 2.1, named rand.cpp. This program is similar

to the loop programs we’ve written previously, but it introduces two

new things. First, at the top of the program there’s an extra #include

statement. Second, the program makes use of a new function, called

rand.

https://commons.wikimedia.org/wiki/File:Dans_i_Maaneglans.jpg


chapter 2. random numbers and simulations 57

Program 2.1: rand.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

int main () {

int i;

for ( i=0; i<10; i++ ) {

printf ( "%d\n", rand() );

}

}

Notice that rand is a function, like
printf, but it’s a function that takes
no arguments. It just generates random
numbers out of nothing.

Exercise 7: Random Numbers

Write and compile Program 2.1, using nano and g++, then

run it to see what it does.

You should find that the program generates a list of seem-

ingly random numbers. That’s the whole purpose of the

rand function. Each time your program uses rand, it gives

you a different number.

Try running your program several times. Do you notice

anything surprising?

Here’s a useful tip: If you want to run
your program again without having
to type “./rand”, you can use the up
arrow key on the keyboard to bring
back commands you’ve used before.
Just keep pressing the up arrow until
you see the command that you want to
re-do, then press enter to repeat that
command. You can also use the left
and right arrow keys to move back and
forth in what you’ve typed and make
changes before you press enter.

Before we can use rand, we need to add the extra #include statement

at the top of the program. This statement tells the C compiler some

necessary information about the rand function. The first #include

statement, which we’ve used in our earlier programs, provides the

compiler with information it needs in order to use the printf function.

We’ll learn more about these #include statements in later chapters.

2.4. Making it Better
If you run Program 2.1 several times, you should find that, although

the numbers look random, you get the same set of numbers each time

you run the program. That doesn’t seem very random, does it? Let’s

try to do better. Take a look at Program 2.2.

In Program 2.2 we’ve added two more lines. Before the “for” loop

there’s now a cryptic-looking statement involving two new functions,

srand and time. Then, at the top, we’ve added yet another #include

statement.



58 practical computing for science and engineering

Program 2.2: rand.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

srand(time(NULL));

for ( i=0; i<10; i++ ) {

printf ( "%d\n", rand() );

}

}

Exercise 8: More Random!

What do these changes do? Let’s try it. Remember that you

can modify your program by typing “nano rand.cpp”,

then make your changes, and press Ctrl-X to save your

changes and exit nano.

Edit your rand.cpp program, compile it again and then try

running it several times. (Wait at least one second between

tries.) You should now see that you get a different set of

numbers each time you run the program. That’s great, but

how did it happen?

2.5. Pseudo-Random Numbers
Let’s think about what we mean by “random”. If we roll a fair die, it

should be impossible to predict which number will come up. Even

if we roll the die many times, the outcome of the next roll should be

unpredictable and independent of all the previous rolls. If the numbers

are really random, it should be impossible to predict what the next

number will be.

Rolling a fair six-sided die will give you
a truly random number between 1 and
6, inclusive.
Source: Wikimedia Commons

It’s not possible to generate truly random numbers using only a com-

puter program. A function like rand can ultimately only do math,

and we can expect that the same set of mathematical operations will

always give the same answer. The rand function starts with an initial

number (called a “seed”) and then just does some very roundabout

calculations that give us another number that has no obvious relation

to the preceding number. Thereafter, each time we use rand in our

program it builds on the number it had before.

https://commons.wikimedia.org/wiki/File:Seven_5732852.jpg


chapter 2. random numbers and simulations 59

Our first program gave us a chain of seemingly random numbers, but

because the seed gets set to the same value each time we start the

program, the list of numbers was always the same. The second version

of the program sets the seed to a different value each time we run the

program. It does this by using the computer’s clock. Whenever we

run Program 2.2 the seed is set to the current time, expressed as the

number of seconds that have elapsed since January 1, 1970.1 That’s

1 This is why I told you to wait at least
one second between tries. Otherwise
you might run the program twice with
the same seed, and get the same set of
numbers.

what “srand(time(NULL))” does. The srand function sets the seed

used by rand. The expression “time(NULL)” gives us the time. The

extra #include statement tells the compiler what it needs to know in

order to use the time function.

Even with this change, it’s important to know that if your program

generates millions or billions of numbers, rand will eventually start

repeating itself. (See Figure 2.2.)

Figure 2.2: These two images show the
output of a bad random number
generator (top) and a better generator
(bottom). The lines in the top image
indicate that the generator soon starts
repeating the same set of numbers. The
generator used for the bottom image
goes much longer without repeating.

Functions like rand are called “pseudo-random number generators”

(PRNGs). The numbers they generate aren’t really random, but they’re

good enough for many purposes. Some computers now include a

device called a “true random number generator” (TRNG). These devices

generate random numbers by observing real physical processes, such

as thermal noise. They effectively roll real miniature dice to generate

their random numbers. TRNGs are becoming more important because

good random numbers are essential to cryptography.

2.6. Random Numbers Between Zero and One
You’ve probably noticed that the numbers generated by rand are large

integers. That’s fine for some things, but programmers often want to

generate random real numbers that fall in the range between zero and

one (for reasons that will soon become apparent). How can we do this

using rand? Take a look at Program 2.3.

The rand function generates integers between zero and a large number

called RAND_MAX. RAND_MAX is one of the things defined when we say

#include < stdlib.h >.2 If you’re curious, you could print out the

2 The numerical value of RAND_MAX
may vary, depending on what version
of the C compiler you use.

value of RAND_MAX with a statement like:

printf( "%d\n", RAND_MAX ).

Program 2.3 introduces a new variable, x. We’ll want x to be a random

number between zero and one, so this variable can’t be an integer.

Instead, we’ll make it a double.3 We calculate the value of x by 3 See Chapter 1.



60 practical computing for science and engineering

Program 2.3: rand.cpp (Version 3)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double x;

srand(time(NULL));

for ( i=0; i<10; i++ ) {

x = rand()/(1.0 + RAND_MAX);

printf ( "%lf\n", x );

}

}

getting a random integer from rand and dividing that number by

1.0 + RAND_MAX. Since the numbers generated by rand are always

between zero and RAND_MAX, x should always be between zero and

something slightly less than one4. 4 Why don’t we want to go all the way
to one? We’ll see the benefits of that in
a later chapter. For now, don’t worry
too much about it. Since RAND_MAX is a
very large number, the biggest numbers
we generate will be very close to one
(less than a billionth smaller).

Note that it’s important to say 1.0 + RAND_MAX here instead of

1 + RAND_MAX. To understand why, we have to think about the way C

does arithmetic with integers. RAND_MAX and the numbers generated

by the rand function are integers.

When C divides one integer by another, it assumes that you want the

result to be an integer, too. If the result were equal to 0.7, the computer

would drop everything after the decimal point and just leave zero. Since

RAND_MAX is an integer, C would see the expression 1 + RAND_MAX

as an integer, and rand()/(1 + RAND_MAX) would always be zero.

By just saying 1.0 instead of 1, we give C a clue that we want to keep

decimal places in our results.

Exercise 9: Making Real Numbers

Try modifying your program so that it looks like Program

2.3. Compile it, run it, and look at the results. You should

now see a list of numbers that are all between 0 and 1.



chapter 2. random numbers and simulations 61

2.7. Random Integers Between Some Limits
Sometimes we want to generate a random integer between some mini-

mum and maximum values. For example, maybe we want to simulate

rolling a six-sided die, so we want to generate numbers between one

and six.

We can do this by starting with a random real number between zero

and one, as described in the preceding section. For example, we might

have a double variable named x in our program, and a line that says:

x = rand()/(1.0 + RAND_MAX);

That would give x a random value between 0 and 0.9999999. . . 5. We 5 It never quite gets to 1.0 because the
maximum value returned by rand is
RAND_MAX and we’re dividing by 1.0

+ RAND_MAX.

could multiply this by six to get a number between 0 and 5.9999999. . . .

Let’s create a new double variable named y that does that:

y = 6 * x;

C provides us with a way of chopping the decimal part off of a number.

All we need to do is put (int) in front of the value. Let’s modify our

program so that we have an integer variable named i instead of the

double variable named y:

i = (int)( 6 * x );

Notice that we’ve put parentheses around 6 * x so that (int) ap-

plies to the whole thing. Otherwise, it would just apply to 6. Be-

fore the (int) is applied, we have a random number between 0 and

5.9999999. . . . The (int) chops off the decimals and leaves us with a

number between 0 and 5.

If our goal is to generate a number between 1 and 6, we just need to do

one more thing: add 1 to the value of i.

i = 1 + (int)( 6 * x );
Dice come in many shapes. Often
they’re shaped like one of the five
platonic solids. These are the only
regular convex polyhedra that are
possible in three dimensions. In four
dimensions there are six such shapes,
but in five and higher dimensions, there
are only three. See this excellent video
by Carlo Sequin for some fun with
higher-dimensional “polytopes”:
https://www.youtube.com/watch?v=2s4TqVAbfz4.
Source: Wikimedia Commons

What if we wanted numbers between 2 and 7 instead of 1 and 6? Then

we’d just need to change one thing:

i = 2 + (int)( 6 * x );

Notice that the multiplier, 6, didn’t change. This is because the our new

range still includes six possible values. Now they’re 2, 3, 4, 5, 6, and 7.

In general, if we want integers between nmin and nmax, the number of

values will be nmax − nmin + 1.

https://en.wikipedia.org/wiki/Platonic_solid
https://en.wikipedia.org/wiki/Polytope
https://www.youtube.com/watch?v=2s4TqVAbfz4
https://commons.wikimedia.org/wiki/File:Platonic_Solids_Transparent.svg


62 practical computing for science and engineering

So, if we want to get a random integer between min and max we can

do it like this:

nvals = max - min + 1;

i = min + (int)( nvals * x );

Program 2.4 uses this strategy to generate a random number between 1

and 6.

Program 2.4: diceroll.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

double x;

int i;

int min = 1;

int max = 6;

int nvals;

nvals = max - min + 1;

srand(time(NULL));

x = rand()/(1.0 + RAND_MAX);

i = min + (int)(nvals*x );

printf ( "%d\n", i );

}

This program could be modified to generate a random integer in any

range you want, just by changing the values of min and max.

Claus Meyer, 1886, Die Würfelspieler.
Source: Wikimedia Commons

Exercise 10: Gonna Roll The Bones

Write a program based on Program 2.4 that rolls two six-

sided dice and prints (1) the number on each die and (2) the

sum of their two numbers. For example, if both dice roll six,

the sum would be twelve. Run the program several times to

see if you can roll a twelve!

https://commons.wikimedia.org/wiki/File:ClausMeyer-Bild_2564.jpg


chapter 2. random numbers and simulations 63

2.8. Writing a Simulation Program
Imagine a rock in a gutter. In this place it rains once per day, and every

time it rains the rock slides some random distance, ∆x, down the gutter.

Assume ∆x is always between zero and 100 cm. Let’s try to simulate For more on stones in gutters, see the
excellent short story “Fall of Pebble-
Stones” by R.A. Lafferty.

this physical system with a computer program, and see how the rock

behaves.

Figure 2.3: A rock, sliding along a gutter.

Program 2.5: gutter.cpp (Version 1)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double delta_x;

double x;

srand(time(NULL));

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x = x + delta_x;

printf ( "%lf\n", x );

}

}

You’ll notice that Program 2.5 is very similar to Program 2.3. The main

differences are that (1) we set the variable x equal to 0.0 before starting

our loop, and (2) each time around the loop we add a random amount

to x. Also, instead of x as our random number, we’ve renamed this

As you saw in Chapter 1, when you
see an expression like x = x+d in a C
program it means “Set the new value
of x equal to the old value plus d”.
Remember that this is a little different
from what you may be used to in
algebra. It might help if you keep in
mind that, in C, the statement x =

1 means “assign the value 1 to the
variable x”. In algebra, on the other
hand, the same statement would mean
“I promise you that x is equal to 1”.

variable delta_x.



64 practical computing for science and engineering

The variable x stores the rock’s current position, in centimeters. It starts

out at x = 0.0. Each time around the loop represents one rainstorm,

which washes the rock a random distance, ∆x, down the gutter. We

want ∆x to be a number between zero and 100 centimeters, so we

calculate it by taking a random number between zero and one (as we

did in Program 2.3) and multiplying that by 100. The new value of x

after the rainstorm is x + ∆x. At the bottom of the loop we print out

the new value of x. The program simulates the movement of a rock as

it slides down the gutter over the course of ten days in this very rainy

location.

Exercise 11: First Gutter Program

Try writing Program 2.5, compiling it, and running it. Do

the values it prints out make sense? Run it several times

(waiting at least one second between tries). You should get

different, but still reasonable, results each time.

Each time you run it, the last number printed by the program

is the stone’s position at the end of day number ten. Do

these numbers seem reasonable? Keep in mind that if the

stone traveled exactly 50 cm each day (halfway between zero

and 100 cm), it would end up 500 cm from the origin at the

end of day ten.

But what about. . . ?

In Program 2.5 we named one of the variables delta_x. What

kinds of names are allowed for variables in the C language?

Allowed Characters:

Variable names can only contain letters (upper- or lower-case),

numbers and the underscore character, “_”. Names must begin

with a letter or an underscore (not a number).

It’s good practice to always use a letter as the first character in

variable names. Leading or trailing underscores are sometimes

used internally by the compiler. If you get into the habit of using

an underscore at the beginning of variable names, you may run

into confusion later in your programming career.

Remember that C is case-sensitive, so that a variable named

Velocity, with an upper-case “V”, is completeley different from



chapter 2. random numbers and simulations 65

a variable named velocity. Also, note in particular that spaces

aren’t allowed in variable names.

Maximum Length:

Different versions of the C compiler have different limits on the

maximum length of variable names. The compiler we’re using, g++,

has no limit. In principle, you could give a variable a name that

was thousands of letters long, although this would obviously be

awkward to type! Some C compilers limit variable names to 2,048

characters, and others require that at least the first 31 characters

of each name be different from any other name in your program.

With all of that in mind, it would be a good idea to limit yourself

to variable names that are 31 characters or fewer.

It’s good practice to give your variables clear, concise names like

velocity, width, temperature, et cetera. This helps you re-

member what they’re for, and makes it easier for other people to

understand your program.

Reserved Words:

Some names are simply not allowed. For one thing, you can’t give

your variable a name that’s the same as any of the words that make

up the C language. You couldn’t, for example, name a variable

int, double or for. There are 32 words of this type. For the

record, they are:

auto break case char const continue default do double

else enum extern float for goto if int long register return

short signed sizeof static struct switch typedef union un-

signed void volatile while

You also can’t give your variable the same name as any function

your program knows about. It wouldn’t be allowable to name

a variable printf, for example, in any of the programs we’ve

written so far.

(Note that I’m being careful to say “any function your program

knows about”. You’ll understand what I mean later, when we talk

about libraries of functions.)



66 practical computing for science and engineering

2.9. Some New Arithmetic Operators
The C compiler understands many arithmetic operators. Besides +,−, ∗,

and / there are several “combination” operators that provide shortcuts

for doing common operations. Figure 2.4 shows some of these.

If we say, for example, d += 100, we mean “increment the value of d

by 100”. It’s exactly equivalent to writing d = d + 100, but a little

easier to type. I find that it also helps prevent typing errors, especially The += operator is similar to the ++ op-
erator we’ve been using in “for” loops.
The difference is that ++ increments the
value by 1, but += can increment by any
amount.

with long variable names. Consider the following for example:

somelongname = somelongnome + 10;

Did you catch the typo? If I’d written somelongname += 10 instead,

I’d have one less opportunity to misspell the variable name.

+ a+b Addition

- a-b Subtraction

* a*b Multiplication

/ a/b Division

Arithmetic Operators:

C has many arithmetic operators.  Here are some of them:

Operator Usage Equivalent to

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

decrement a++ → a = a+1

decrement a-- → a = a-1

Some operators let you do 
arithmetic while assigning 
a value to a variable.

Some operators let you do 
arithmetic while assigning 
a value to a variable.

++ and -- do this too:++ and -- do this too:

Figure 2.4: Some of C’s arithmetic
operators.



chapter 2. random numbers and simulations 67

2.10. Focusing on the Important Results
What if we’re only interested in the total distance a stone has travelled

at the end of ten days? We can modify our program, as shown in

Program 2.6, so that instead of printing each new position, it only

prints out the final position. As you can see, this just requires us to

move the printf statement outside of the “for” loop.

Note that Program 2.6 also takes advantage of the += operator to make

one of the statements a little shorter. Remember that x += delta_x

does exactly the same thing as x = x + delta_x.

Program 2.6: gutter.cpp (Version 2)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

double delta_x;

double x;

srand(time(NULL));

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x += delta_x;

}

printf ( "%lf\n", x );

}

Exercise 12: Let’s Race!

Modify your gutter program so that it looks like Program

2.6. Compile it, and then run it a few times. Each time you

run it, you should see a single number, and you should get a

different number each time (assuming you wait at least one

second between tries, as before). Try racing your stone with

your neighbors!

2.11. Tips for Using Loops
Almost all of the programs we write will use loops. Here are a few tips

that will help keep you out of trouble when using them:



68 practical computing for science and engineering

• Count starting with zero, not one. You could write a “for” loop

like this to count from 1 to ten:

for ( i=1; i<11; i++ )

but you’ll find later that it’s more natural in C to number items

starting with zero instead of one. So, in the programs we’ve been

writing we loop ten times by writing a “for” statement like this,

instead:

for ( i=0; i<10; i++ )

Doing it this way will make things much easier for you in the future.

• Don’t change the value of your counter variable inside the loop.

For example, what would this do?:

#include <stdio.h>

int main() {

int i;

for (i = 0 ; i < 10 ; i++) {

i = 100*i;

printf("loop number %d\n", i);

}

}

(Note the line that reads i = 100*i.)

If you tried it, you’d see that the program only prints out two

numbers, instead of the ten numbers you might have expected. Why

is this? It’s because you’ve changed the value of i inside the loop.

The first time around the loop, the program prints “0”, and the

second time around the loop it prints “100”. So far, so good. But

then the program stops.

This happens because the value of i is now 100, so when we get

back to the top of the loop, the “for” statement sees that “i<10” is

no longer true, and the loop stops.6 6 See the discussion about how “for”
loops work in Chapter 1.

• Finally, don’t assume that your counter variable has a useful value

any place outside its loop. After the loop is finished, does “i”

contain the number of times around the loop, or something more or

less? (Or even something completely different?) The answer can get

complicated. It’s better to assume that you can only trust the value

of the counter variable when you’re inside its loop.



chapter 2. random numbers and simulations 69

2.12. Nested Loops
Let’s get back to our gutter program now. Imagine that we draw a

starting line and arrange a bunch of our rocks behind it, ready to

race each other down the gutter like racehorses in their starting gates.

After many rainstorms, the rocks would all be at different locations

somewhere lower down the gutter.

They’d be at different locations because each rock slides a different

random amount during each rainstorm. A few rocks will get lucky and

travel a long way. A few will travel unusually short distances. Most of

the rocks will end up somewhere between these extremes, mounded

up around some average distance.

Does the output of our program match this prediction? If we wanted

something really boring to do, we could run Program 2.6 once for each

rock, write down the results, and then graph them. Computers can

save us that effort, though, and they’re less likely to make the mistakes

we might make while doing the work ourselves.

The inner loop of Program 2.7 is nested
inside the outer loop, like these Russian
Matryoshka dolls.
Source: Wikimedia Commons

We can modify our program so that it effectively runs the simulation

many times. To do this, we’ll need to add another loop. Take a look at

Program 2.7.

Program 2.7: gutter.cpp (Version 3)

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main () {

int i;

int j;

double delta_x;

double x;

srand(time(NULL));

for ( j=0; j<10000; j++ ) {

x = 0.0;

for ( i=0; i<10; i++ ) {

delta_x = 100.0 * rand()/(1.0 + RAND_MAX);

x += delta_x;

}

printf("%lf %d\n", x, j);

}

}

Nested

Loops

Changes from

Program 2.6 are

shown in bold.

https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg


70 practical computing for science and engineering

The new loop wraps around the loop that was already there. (We say

that the old loop is “nested” inside the new loop.) Each time we go

around the new loop we’ll simulate another stone washing down the

gutter for ten days. The variable i counts the number of rainstorms and

j counts the number of stones. The program simulates 10,000 stones!

That would be a lot of work by hand, but it’s trivial for a modern

computer.

The program prints out two numbers7 for each stone: The total distance 7 Notice that our printf statement
here has two placeholders, “%lf %d”,
one for the stone’s final position, which
is a number containing decimal places,
and one for the stone’s starting gate,
which is an integer.

the stone travels, and the number of the stone’s “starting gate”. We

number these gates from zero to 9,999, and use these numbers to

keep track of which stone is which. We use the new variable j to

represent the starting gate number, and this is the counter variable for

the newly-introduced loop.

Each stone will start at the same place, so every time the program

starts a new stone, it resets x (which represents the stone’s position) to

zero. When a stone has been through ten rainstorms, its final position

and starting gate number are printed out, and then the program starts

working on another stone.

Exercise 13: Scattering Stones

Modify your “gutter” program so that it looks like Program

2.7. Compile it, but don’t run it like you’ve run the preceding

programs. Instead, use the trick we saw in Chapter 1 that

lets you send the program’s output into a file, like this:

./gutter > gutter.dat

Now plot your results using gnuplot. Type gnuplot, then enter

the following commands (can you guess what the xrange

command does?):

set xrange [0:]

plot "gutter.dat"

You should see something like Figure 2.5. The horizontal

axis shows how far each stone traveled. The vertical axis

shows which gate the stone started from. As you can see, a

“typical” stone travels about 500 cm, but some stones only

make it to about 200 cm, and some go over 800 cm.

Does Figure 2.5 look the way we’d expect it to? Let’s think about it.

During each rainstorm, a stone travels a random distance between



chapter 2. random numbers and simulations 71

zero and 100 centimeters. We’d expect the average distance to be 50

centimeters. So, after ten rainstorms, we’d expect a typical stone would

travel 50× 10 = 500 centimeters. This is the position of the densest part

of Figure 2.5. A maximally sticky stone wouldn’t move at all (travelling

zero centimeters), and a maximally slippery stone would zip through

a distance of 100 × 10 = 1, 000 centimeters. We’d expect our graph

to range from zero to 1,000 centimeters, with a peak at around 500

centimeters, and that’s indeed what it shows.

Figure 2.5: A plot of the results from our
latest version of the “gutter” program.

But what about. . . ?

Sometimes, you’ll make a mistake that causes your program to

keep looping forever. What can you do to stop this?

You can tell the program to stop running by pressing Ctrl-C (hold

down the Ctrl key while pressing the “C” key).

Stopping a runaway program.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Arbuckle_Bros._(3093006195).jpg?fastcci_from=342503&c1=342503&d1=15&s=200&a=list


72 practical computing for science and engineering

2.13. Conclusion
Imagine that we continued to extend and improve our “gutter” program.

We could add the effects of friction, rainstorms of random duration

and strength, the slope of the gutter, and so forth. Eventually, we might

have a program that could realistically simulate erosion, an avalanche

or a mudslide.

Erosion near Bern, Switzerland
Source: Wikimedia Commons

For example, we could modify our program so that the range of random

distances was determined by the duration of the rainstorm, instead

of always being zero to 100 cm. Then we’d generate rainstorms of

random durations and see what happens. By adding more and more

refinements, we can make our simulation’s results similar enough to

reality to meet our needs.

Simulation programs like this allow us to handle large, complex prob-

lems by breaking them up into simple, understandable pieces. They

represent an important computing technique that you can apply to

many problems.

https://commons.wikimedia.org/wiki/File:Erosion_Off-site_Wege013.jpg


chapter 2. random numbers and simulations 73

Practice Problems

“Time keeps on slippin, slippin, slippin,
into the future....” Steve Miller in 1977.
Source: Wikimedia Commons

1. As described in Section 2.6, write a program that prints out the value

of RAND_MAX. Call your program printrand.cpp.

2. Write a program named epoch.cpp that prints the following:

Seconds since 1970: ...

Years since 1970: ...

Where the ... is replaced by the current number of seconds and

years since 1970, based on the value returned by the time function,

as described in Section 2.5. Check your program by running it sev-

eral times to make sure that the number of seconds changes as time

passes.

Hint 1: The statement “t = time(NULL);” will store the number

of seconds in the variable t.

Hint 2: Assume that the number of seconds in a year is 60*60*24*365.25.

Hint 3: You’ll probably want to use %lf as the placeholder when

printing the year. Otherwise, g++ might give you warnings or errors.

3. Modify Program 2.4 so that it generates either a zero or a one. Then

modify your new program so that it uses a loop to do this ten times.

The resulting program does the equivalent of ten coin flips, with

zero or one representing heads or tails. Call your new program

coinflip.cpp.

4. Modify Program 2.4 so that it prints out two random digits between

zero and nine. Make the program write the digits side-by-side, like

67 or 03. Call your new program percentile.cpp. If you’ve ever

played a roll-playing game like Dungeons and Dragons you’ve used

ten- or twenty-sided dice to generate pairs of digits like this. In these

games such a pair of dice are called percentile dice. The two digits

they give you are interpreted as a percentage between 00% and 99%.

A 20-sided die shaped like an
icosahedron. Two dice like this were
originally used in Dungeons and
Dragons for rolling percentiles. Later,
they were replaced by two ten-sided
dice. In this author’s opinion, ten-sided
dice are an abomination, since they
aren’t one of the five platonic solids!

5. Each line printed by Program 2.2 shows a single random integer.

Using that program as an example, write a program that prints

out two random integers on each line, separated by a space. Make

the program print 10,000 pairs of integers. Let’s call this program

tworand.cpp. Use the trick you learned in Chapter 1 to send the

program’s output into a file named tworand.dat:

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 0  5e+08  1e+09  1.5e+09  2e+09

Figure 2.6: The output of the tworand
program, plotted by gnuplot.

./tworand > tworand.dat

Check the program’s output by using gnuplot to plot the data in this

file. Start gnuplot and give it the command:

plot "tworand.dat"

https://commons.wikimedia.org/wiki/File:Steve_Miller_in_1977.JPG


74 practical computing for science and engineering

This causes gnuplot to use the two numbers on each line as the x

and y coordinates of a point. You should see a graph that looks like

Figure 2.6.

The tworand program generates a set of random points in the x, y

plane. As we’ll see later (in Chapter 10) this can be very useful.

6. Our gutter programs have a lot of numbers written into them: 10

days, 100 cm, 10,000 trials. If we want to change to, say, 1,000 trials,

we need to find all of the places in the program where we currently

assume a value of 10,000, and change them.

It would be better if these numbers were more easily changed. Can

you rewrite Program 2.7 so that the number of days, the maximum

“slide” in cm, and the number of trials are given by variables defined

near the top of the program?

For example:

int ndays = 10;

double maxslide = 100.0; // in cm.

int ntrials = 1000;

7. Using a nested pair of loops, as described in Section 2.12, write a

program named grid.cpp that prints out the grid shown below:

[0,0] [0,1] [0,2] [0,3] [0,4]

[1,0] [1,1] [1,2] [1,3] [1,4]

[2,0] [2,1] [2,2] [2,3] [2,4]

[3,0] [3,1] [3,2] [3,3] [3,4]

[4,0] [4,1] [4,2] [4,3] [4,4]

Hint 1: Remember that you can leave off \n if you want printf to

keep printing things on the same line.

Hint 2: It’s perfectly OK to use printf to print nothing but a

newline, like this: printf ("\n"); A grid like the one you produce in
Problem 7 might be used to identify the
squares on a Bingo card.
Source: publicdomainpictures.net

8. Make a new program named bingo.cpp that is a modified version

of Program 2.4. The new program should be different from Program

2.4 in two ways: (1) The numbers it prints should be between 1 and

75, inclusive, and (2) instead of printing just one random number, it

should use a pair of nested loops8 to print a grid of random numbers, 8 See Program 2.7 for an example of
nested loops.like a Bingo card. You could use this program to generate Bingo

cards! See the two hints in Problem 7 for advice about how to print

a nice-looking grid. Also, don’t try to make a “Free Space” in the

middle: Just put a number there, like all the other squares.

9. Imagine you have twelve 6-sided dice. Now roll all the dice at once

and add up the numbers they show. This should give you a sum

https://www.publicdomainpictures.net/en/view-image.php?image=268252&picture=one-bingo-card


chapter 2. random numbers and simulations 75

between 12 and 72. Write a program named 12dice.cpp that rolls

twelve dice and prints their sum. Have the program repeat this

10,000 times. Run the program like this to send its output into a file

named 12dice.dat:

./12dice > 12dice.dat

Now start gnuplot and give it the command plot "12dice.dat".

You should see a graph like Figure 2.7. Notice that the numbers

tend to cluster around a value of 42. You might expect this, since

the average value for rolling a single die is (6 + 1)/2 = 3.5 and

12 × 3.5 = 42.  20

 25

 30

 35

 40

 45

 50

 55

 60

 65

0.0 1.0k 2.0k 3.0k 4.0k 5.0k 6.0k 7.0k 8.0k 9.0k 10.0k

S
u
m

 o
f 
D

ic
e

Roll Number

Figure 2.7: The sum of twelve dice,
repeated 10,000 times. They cluster
toward the center due to something
mathematicians call the Central Limit
Theorem. We’ll talk more about this in
Chapter 7.

Hint: Use a variable named sum to hold the sum of the 12 dice. Each

time you start rolling the dice, remember to set sum to zero at the

beginning. Then just add the value of each die to sum until you’ve

added all twelve numbers. Print sum, then go on to the next roll.

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem

