The muon g-2 experiment: overview and prospects

Dinko Počanić § (for the Muon g-2 Collaboration)

[§]University of Virginia

84th Annual Meeting of the Southeastern Section of APS Milledgeville, Georgia, 16–18 November 2017

Lepton magnetic dipole moments

We recall *g*, the g-factor (or dimensionless gyromagnetic ratio):

$$\vec{\mu} = \mathbf{g} \frac{e}{2m} \vec{S}$$

- Dirac theory gives $g \equiv 2$ for a point particle.
- Quantum fluctuations give rise to the anomalous magnetic moment:

$$a=\frac{g-2}{2}\neq 0.$$

Lepton magnetic dipole moments

We recall g, the g-factor (or dimensionless gyromagnetic ratio):

$$\vec{\mu} = \mathbf{g} \frac{e}{2m} \vec{S}$$

- Dirac theory gives $g \equiv 2$ for a point particle.
- Quantum fluctuations give rise to the anomalous magnetic moment:

$$a=\frac{g-2}{2}\neq 0.$$

Example: electron anomaly is extremely well reproduced by QED:

 $a_{e} = 0.00115965218164(76)$ (theory, 10th order) $a_{e} = 0.00115965218073(28)$ (experiment, 24 ppb)

Motivation and goals

Lepton magnetic dipole moments

We recall *g*, the g-factor (or dimensionless gyromagnetic ratio):

$$\vec{\mu} = \mathbf{g} \frac{\mathbf{e}}{2m} \vec{S}$$

- Dirac theory gives $g \equiv 2$ for a point particle.
- Quantum fluctuations give rise to the anomalous magnetic moment: g-2

$$a=\frac{g-2}{2}\neq 0.$$

Example: electron anomaly is extremely well reproduced by QED:

 $a_{e} = 0.00115965218164(76)$ (theory, 10th order) $a_{e} = 0.00115965218073(28)$ (experiment, 24 ppb)

However, a_{μ} is much more sensitive than a_{e} to massive particle loops as:

$$(m_\mu/m_{
m e})^2pprox$$
 43,000 .

Muon g-2 experiment:

	γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	w w μ ν _μ ν _μ Electroweak	$\mu \gamma \varphi^{\pi} \gamma \mu$ Hadronic
$a_{\mu}^{SM}=a_{\mu}^{QI}$ Snowmass white	$ED + a_{\mu}^{EW} + a_{\mu}^{HLBI}$ e paper survey [T	$a_{\mu}^{HVP} + a_{\mu}^{HOHVP}$. Blum et al., arXiv	+ a _µ (NP)
		Va	lue $(\times 10^{-11})$ units
QED $(\gamma + \ell)$	116 584 718.9	Va 9 <u>51</u> ± 0.009 ± 0.01	$\frac{lue\;(\times10^{-11})\;units}{9\pm0.007\pm0.077_{\alpha}}$
QED $(\gamma + \ell)$ HVP(lo) [Davier 11]	(116 584 718.9 QED domina	Va $\underline{51} \pm 0.009 \pm 0.01$ ates the value,	
QED $(\gamma + \ell)$ HVP(lo) [Davier 11] HVP(lo) [Hagiwara 11]	(116 584 718.9 QED domina	Va $951 \pm 0.009 \pm 0.01$ ates the value,	$ \begin{array}{c} \begin{array}{c} {\rm lue}\;(\times\;10^{-11})\;{\rm units}\\ \\ \hline 9\pm 0.007\pm 0.077_{\alpha}\\ 6\;923\pm 42\\ 6\;949\pm 43 \end{array} \end{array} $
QED $(\gamma + \ell)$ HVP(lo) [Davier 11] HVP(lo) [Hagiwara 11] HVP(ho) [Hagiwara 11]	(116584718.9 QED domina	Va $951 \pm 0.009 \pm 0.01$ ates the value,	$ \begin{array}{c} \begin{array}{c} \text{lue} \ (\times 10^{-11}) \ \text{units} \\ \hline 9 \pm 0.007 \pm 0.077_{\alpha} \\ 6 \ 923 \pm 42 \\ 6 \ 949 \pm 43 \\ -98.4 \pm 0.7 \end{array} $
QED $(\gamma + \ell)$ HVP(lo) [Davier 11] HVP(lo) [Hagiwara 11] HVP(ho) [Hagiwara 11] HLbL	(116 584 718.9 QED domina	Va $951 \pm 0.009 \pm 0.01$ ates the value,	$ \begin{array}{c} \begin{array}{c} \text{lue} \ (\times 10^{-11}) \ \text{units} \\ \hline 9 \pm 0.007 \pm 0.077_{\alpha} \\ 6 \ 923 \pm 42 \\ 6 \ 949 \pm 43 \\ -98.4 \pm 0.7 \\ 105 \pm 26 \end{array} $
QED $(\gamma + \ell)$ HVP(lo) [Davier 11] HVP(lo) [Hagiwara 11] HVP(ho) [Hagiwara 11] HLbL EW	(<u>116 584 718.</u> QED domina	Va 251)± 0.009 ± 0.01 ates the value,	$ \begin{array}{c} \begin{array}{l} \text{lue} \ (\times 10^{-11}) \ \text{units} \\ \hline 9 \pm 0.007 \pm 0.077_{\alpha} \\ \hline 6 \ 923 \pm 42 \\ \hline 6 \ 949 \pm 43 \\ -98.4 \pm 0.7 \\ \hline 105 \pm 26 \\ \hline 154 \pm 1 \end{array} $
QED $(\gamma + \ell)$ HVP(lo) [Davier 11] HVP(lo) [Hagiwara 11] HVP(ho) [Hagiwara 11] HLbL EW Total SM [Davier 11]	(116 584 718.) QED domina] 116 591 8	Va $251 \pm 0.009 \pm 0.01$ ates the value, $302 \pm 42_{H-LO} \pm 26_{H-LO}$	$\begin{array}{l} \begin{array}{l} \text{lue} (\times 10^{-11}) \text{ units} \\ \hline 9 \pm 0.007 \pm 0.077_{\alpha} \\ 6 923 \pm 42 \\ 6 949 \pm 43 \\ -98.4 \pm 0.7 \\ 105 \pm 26 \\ 154 \pm 1 \\ \hline \\ \text{HO} \pm 2_{\text{other}} (\pm 49_{\text{tot}}) \end{array}$

Muon g-2 experiment:

Motivation and goals

Recent advances: 1st Workshop of the Muon g-2 theory initiative, FNAL, June 2017.

Experiment: use properties of $\mu^+ ightarrow e^+ u_e ar u_\mu$ decay

🛄 D. Počanić (UVa)

Muon g-2 experiment:

Motivation and goals

Experiment: use properties of $\mu^+ ightarrow e^+ u_e \bar{ u}_\mu$ decay

high energy positrons versus time

Motivation and goals

Measuring ω_a through correlation with p_μ

• If g = 2, difference of spin precession and cyclotron frequencies is zero

Measuring ω_a through correlation with p_μ

E-field vertical focusing allowed at p = 3.1 GeV (higher-order a_{μ} contribution cancelled)

Muon g-2 experiment:

Motivation and goals

Muon g - 2: experimental status

Muon g - 2: experimental status

- Use a more intense beam at Fermilab: $21 \times \text{statistics}$ of BNL E821,
- improve many contributing systematics factors.

Motivation and goals

Muon g - 2: experimental status

- Use a more intense beam at Fermilab: $21 \times \text{statistics}$ of BNL E821,
- improve many contributing systematics factors.

Goal for Fermilab E989:

obtain overall 4× reduction in uncertainty, i.e., 0.14 ppm (total).

Ultimate goal of E989

Muon g-2 experiment:

Motivation and goals

Ultimate goal of E989

I.e., for the same SM and EXP central values, the discrepancy would increase from $\sim 3.5 \sigma$ to $\sim 7\sigma$.

New physics reach of a_{μ}

Much literature & many results produced. We touch on two topics.

Supersymmetry: $a_{\mu}^{\text{SUSY}} \approx 130 \times 10^{-11} \tan \beta \, \text{sgn}(\mu) (100 \, \text{GeV}/M_{\text{SUSY}})$, where $\tan \beta = v_2/v_1$ (or v_u/v_d); μ is the strength of $\hat{H}_1\hat{H}_2$ term ...

Muon g-2 experiment:

Motivation and goals

SUSY contributions to a_{μ} for several benchmark parameter sets [Stöckinger 2014].

Determining a_{μ}

Rewriting B in terms of free proton precession frequency ω_p :

Determining a_{μ}

Rewriting B in terms of free proton precession frequency ω_p :

Key points of the experimental method

- 1. Large quantity of highly polarized muons stored in storage ring: 97 % polarized \Rightarrow forward decays,
- 2. Muon spin precession in magnetic field, ω_a is determined by $g_\mu 2$,
- 3. Magic momentum: $p_{\mu} = 30.4 \text{ GeV}/c$ No effect of \vec{E} on precession when $\gamma_{\mu} = 29.3$,
- EW chiral symmetry breaking (PV) gives lab access to average muon spin direction Number of high energy positrons modulated by ω_a (wiggle plot):

5. To interpret ω_a in terms of g_{μ} , an independent precise measurement of $\langle B \rangle$ is critical.

Experimental method

Fermilab E989 collaboration

8 Countries, 35 Institutions, 190 Collabora

Muon g-2 experiment:

Collaboration and move

16-Nov-17/SESAPS 12 / 30

The big SR magnet move (2013)

Muon g-2 experiment:

Collaboration and move

Accelerator complex

- 8 GeV p batch into Recycler,
- split into 4 bunches,
- extract 1 by 1 to strike target,
- long FODO channel to collect $\pi \rightarrow \mu \nu$,
- p/π/μ beam enters DR; protons kicked out; π decay away,
- μ enter storage ring.

D. Počanić (UVa)

Muon g-2 experiment:

Beam and muon storage

Muon beam and storage

electrostatic quadrupoles

🛄 D. Počanić (UVa)

Muon g-2 experiment:

Beam and muon storage

Magnet anatomy

B = 1.4513 T (~5200 A)

· Non-persistent current: fine-tuning of field in real time

12 C-shaped yokes

- 3 poles per yoke
- 72 total poles

Shimming knobs

- · Poles: shape field
- Top hats (30 deg,dipole)
- · Wedges (10 deg, dipole, quadrupole)
- Edge shims (360 deg, quadrupole, sextupole)
- · Laminations (360 deg, dipole, quadrupole, sextupole)
- Surface coils (360 deg, quadrupole, sextupole,...)

g-2 Magnet in Cross Section

Muon g-2 experiment:

Main systems

Magnet shimming

Shimming cart

- Lattice of 25 NMR probes (field measurements)
- 4 capacitive gap sensors (pole-pole alignment/ separation), 70-nm resolution
- 4 corner-cube retroreflectors (position), ~25 µm resolution

Laser tracker

• Cart position (r, ϕ , z)

Muon g-2 experiment:

Main systems

Shimming results

Azimuthally-Averaged Map

Muon g-2 experiment:

Main systems

Trolley

- Map B at regular intervals with NMR probe trolley
- Monitor *B* during DAQ with fixed probes
- B measured with pulsed proton NMR (< 10 ppb single shot precision)
- BNL E821 result:
 - 1 ppm (azimuth average)
 - 100 ppm (local variations)

- ► FNAL E989 goal:
 - 1 ppm (azimuth average)
 - 50 ppm (local variations)

Muon g-2 experiment:

Main systems

Calorimeters (ω_a measurement)

Individual positrons from muon decays are detected in 24 calorimeters; E and t extracted from waveforms. Each calo. segmented into 6 \times 9 channels: Each PbF₂ crystal is read out by a Geiger-mode avalanche photodiode (SiPM).

Muon g-2 experiment:

Calorimeter performance

D. Počanić (UVa)

Muon g-2 experiment:

Main systems

16-Nov-17/SESAPS 21 / 30

Laser calibration system

Sends trains of laser pulses on known intensity synchronously on all calorimeters channels; provides:

- absolute calibration of the SiPMs response,
- short and long term calibration of the of the SiPM gain function,
- debugging of Calo and DAQ systems,
- additional synchronization signals.

Muon g-2 experiment:

Main systems

Laser calibration system performance

D. Počanić (UVa)

Muon g-2 experiment:

Main systems

Straw tube Trackers

Auxiliary detectors: Fiber harps and IBMS

Fiber harps:

2 locations, 2 axis,

- monitor the muon beam entrance position and angle during commissioning,
- periodically measure betatron oscillations during data taking runs.

Inflector beam monitoring system:

3 det's, each with 2 planes of scint. fiber, located outside the inflector:

- primary diagnostic tool to develop & verify beam optics tune at injection,
- give relative intensity of each fill,
- timing of the fill (resolution \ll 150 ns, cyclotron period)

Main systems

Data acquisition system

- Calorimeters, trackers and the laser monitoring system are read out by custom 800 MSPS waveform digitizers.
- The DAQ produces a deadtime-free record of each 700 µs muon fill. We get 12 fills per second, for a total data rate of 20 GB/s.
- Data from each calorimeter processed by an NVidia Tesla K40 GPU, which processes 33M threads per event.
- Data are sorted by T-method (chopped islands) and Q-method (current integrated) data, from which timing info can be extracted.
- The DAQ software is MIDAS based.

Muon g-2 experiment:

Main systems

Experiment on the floor (October 2017)

Muon g-2 experiment:

Main systems

16-Nov-17/SESAPS

27 / 30

Present status of the experiment

- Practically all sub-systems installed and operational,
- First beam injected into storage ring on 31 May 2017,
- Beam (protons and muons) stored for several hundred turns,
- ▶ in July 2017 completed commissioning run (10^{16} proton on target, 3×10^{9} muons delivered to ring),
- first wiggle plot recorded at FNAL!
- July through mid-October shut-down for beam and systems tune-up,
- new commissioning run under way since 16 October.

Results of the June 2017 commissioning run

Number of high energy positrons as a function of time

D. Počanić (UVa)

Muon g-2 experiment:

Commissioning/first data

Conclusions and plans

- ► The Fermilab E989 experiment will improve the BNL E821 muon anomaly a_{μ} result by a 4-fold improvement in precision (from 0.54 to 0.14 ppm).
- If the BNL value holds, this would provide a 7σ discrepancy with the SM, and ample room for New Physics.
- A 5 weeks summer commissioning run just completed successfully (first "wiggle" plot measured at FNAL); a fall 2017 run is under way.

Our goals are:

- reach the BNL level precision by end 2018, and
- ▶ reach the final 0.14 ppm result measurement in 2020. This will require a total of 1.5 × 10¹¹ collected events.

Extra slides

Muon g-2 experiment:

Future plans

Improvements in systematic uncertainties:

E821 Error	Size	Plan for the E989 $g - 2$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
Lost muons	0.09	Running at higher n-value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
CBO	0.07	Higher n-value; straw trackers determine parameters	0.03
E-Field/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
Diff. Decay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
Total	0.20		0.07

E821 Error	Size	Plan for the E989 $g - 2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B ₀		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	-	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

Muon g-2 experiment:

Future plans