Operating Instructions for VPT Experiments

at UVa's HEP Laboratory

Written by John Christopher Jones

Summer 2010

[DRAFT]

Contents

Contents			2
List of Figures			3
\mathbf{Li}	List of Tables		
1	Preamble 1.1 How This Document Was Written 1.2 Conventions Used in This Text 1.3 Links	1 1 1 2	5 6 7 8
2	Overview 2.1 Introduction 2.2 Experimental Setup	3 3 3	9 10 11
Ι	Equipment	6	12
3	Superconducting Solenoidal Magnet 3.1 Cryogen System 3.2 Warnings	7 7 8	13 14 15
4	The Rig 4.1 Amplifier Board [FIXME] 4.2 LED Pulser Boards [FIXME] 4.3 Vacuum Photo-triodes	9 9 9 10	16 17 18 19
5	High Voltage Supply	14	20
6	Low Voltage Supply	16	21
7	National Instruments 7.1 PXI Crate	18 18 20 22	22 23 24 25
II	Operations Manual	23	26
8	Getting Started 8.1 Installing LabVIEW 2009 8.2 Installing the VPT VIs 8.3 Getting the Latest Data	24 24 24 25	27 28 29 30
9	PXI Crate 9.1 Logging into the PXI Crate (RDP) 9.2 Launching LabVIEW 9.3 Opening Project VPT Stability 9.4 Starting Data Acquisition 9.5 Stopping Data Acquisition 9.6 Restarting Data Acquisition 9.7 Resuming Data Acquisition	27 27 27 27 27 27 27 27 28	31 32 33 34 35 36 37 38
	9.8 Shutting Down The Crate (software) 9.9 Powering On Hardware 9.10 Powering Down Hardware	28 28 28	39 40 41

10	Low	Voltage Supply	29	42
	10.1	Panel Controls	29	43
	10.2	Setting Voltage	29	44
	10.3	Setting Current	29	45
	10.4	System Set	29	46
·	TT:1	V-lt Cl	90	
11	H_{11}	Voltage Supply	30	47
	11.1 11.0	Verifying Cable Connguration	30 20	48
	$\frac{11.2}{11.2}$	Killing the High Voltage	30 30	49
	11.0	Ramping Down the High Voltage	30	50
	11.4	Ramping In the High Voltage	31	51
	11.0	Turning Off the High Voltage System	31	52
	11.0 11.7	Turning On the High Voltage System	31	54
			01	54
12	Vaco	cum Photo-triodes (VPTs)	32	55
	12.1	Cleaning	32	56
	12.2	Mounting VPTs	32	57
13	Mai	ntainence	33	58
	13.1	Schedule	33	59
	13.2	Measuring Cryogen Levels	33	60
	13.3	Filling LN2 Cryogen	34	61
	13.4	Ordering LN2 Cryogen	34	62
	13.5	Filling LHe Cryogen	34	63
	13.6	Ordering LHe Cryogen	34	64
Lis	st of	f Figures		65
	a 1		0	
1	Sch	nematic View of CMS Electromagnetic Calorimeter	3	66
2	Rig	g Connections	4	67
3	Sig	nal Path in Teststand	5	68
4	Dis	stribution Box for Cathode Signal to Terminal Block	5	69
5 C	Top	p-down external view of Superconducting Solenoidal Magnet	7	70
6		'I Angle Adjustment Lever	10	71
(Pho		10	72
8			10	73
9		'I Electron Potential Well (qualitative)	11	74
10		1 Pulse Snape	11	75
11		I Angle Repsponse Example	12	76
12	V P Eno	T Long Term Effect	14	77
13	FT0 DV	Dut Panel of the ST1527LC System	14	78
14	DN Eno	A Frecision 9150 Front View	10	79
10	FIU DV	I Legal Dug and Stan Thinnen Douting	10	80
10		bulew Plogh Diagram of light Main wi	19	81
10	Lai	bVIEW (default) Icon and Connection Danels	20 91	82
10 10		bVIEW Arrangement Buttons	21 91	83
19 20	Lal Kir	ntech Science Kimwines	41 39	84
40	1711		04	85
т۰				
LIS	st of	I LADIES		86
1	Ke	vboard Symbols	2	27
2	CA	EN Nuclear Components	15	07 89
-3	DC	Power Supply Channel Configuration	16	80
-	- 0		~	

4	DC Voltage Requirements	17	90
5	High Voltage Group 01	30	91

Preamble 1

1.1 How This Document Was Written

This document was written in IATFX, and was compiled with XFTFX 0.94 from MacTFX 2009 for Unicode 94 support. The Lucida Grande font is used for sans-serif typefaces, available on Mac OS X. Anonymous Pro is used for the monospaced font, also available on Mac OS X.

A number of IATFX packages were used. The document was typeset with the *Memoir* class. Graphics 97 are provided with the TikZ package. The glossary was constructed with the glossaries package. Tables 98 make use of the booktabs and multirow packages. Links are provided by the hyperref package. Several other 99 packages are loaded for symbol support: amsmath, textcomp, ucs, xunicode, xltxtra. 100

1.2Conventions Used in This Text

1.2.1 Font Conventions

The following conventions are used in this text:

EXAMPLE DESCRIPTION $File \rightarrow Open$ For menu items, a sans-serif font is used with \rightarrow between the menu items. For short key sequences that sould be pressed, a sans-serif font is used. keys For directories, filenames, and paths, a mono-spaced font is used. /foo/bar For commands that should be entered literally into a terminal, a bold command -o file.ext mono-spaced font is used. --file (named field) For options the user should supply, a brief description of the option is surrounded in angle brackets. LabVIEW For software, application names, and operating systems, a sans-serif font is used. CAENThe maker of a component is typeset this way. CAEN SY1527LC The make (manufacturer) and model number of a component are typeset this way. The model number of a component is typeset this way. SY1527

1.2.2 Advisories 104 AVOID hazards pointed out by the warning signs. 105 **DO** read positive recommendations in boxes like this. 106 **X** DO NOT ignore negative recommendations without consulting with the experiment maintainer. 107

1

92 93

> 95 96

101

1.2.3 Symbols Used

For brevity and consistency, a number of standard symbols are used to represent keyboard keys. These $_{109}$ conventions were largely adopted from Mac OS X. $_{110}$

Symbol	NAME	Also Known As
Û	Shift	
^	Control	_
r	Option	Alt
Ħ	Command	Windows Key
\boxtimes	Delete Right	_
$\langle X \rangle$	Delete Left	_
গ	Escape	_
с С	Return	Enter
←	Left	—
Ť	Up	—
\rightarrow	Right	—
Ļ	Down	_
→I	Tab	

 Table 1: Keyboard Symbols

Four of these keys are *modifiers*: \mathfrak{H} , $\mathfrak{\hat{n}}$, \wedge , \mathcal{K} . These keys do nothing on their own (except for \mathfrak{H} , which 111 toggles the Start Menu in Windows), and have to be combined with another character. This is denoted by 112 joining two keys, such as \mathfrak{HC} (Copy, OS X) or \mathcal{C} (Copy, Windows). 113

1.3 Links

_

If this document is viewed as a PDF, you'll be able to follow hyperlinks throughout the document. These 115 links have different styles depending on their destination: 116

Google	External link to URI (hyperlink)
Manual.pdf	External link to local companion files
§1.3 Links	Internal link within the same document
LabVIEW	Internal link to glossary definition

108

2 **Overview**

2.1Introduction

The University of Virginia is part of the CMS experiment at CERN. The CMS detector is a multistage 119 general purpose detector. The first inner stage of the detector is the electromagnetic calorimeter (Ecal). 120 The central cavity of CMS is cylindrical, with the beam coming in along its axis. The walls of the cylinder 121 are formed by the Ecal detectors. The rounded walls are the barrel, and at either end are the endcaps. 122 The detectors are made of two main components. The masses that react with the beam products are dense 123 inorganic $PbWO_4$ ("lead-tungstate") scintillator crystals. Behind those scintillators are the scintillation 124 detectors. In the barrel, these detectors are avalanche photodiodes (APDs). In the endcap, these detectors 125 are Vacuum Photo-Triodes (VPTs.) 126

Some of the main objectives of the CMS detector, such as the discovery of the Higgs boson, will be seen 127 primarily in the Ecal. If a light (<140 GeV) Higgs boson is discovered, it will be from a $H^0 \rightarrow 2\gamma$ decay. 128 Above 140 GeV and through 600 GeV the Higgs boson is predicted to decay into two Z bosons, which further 129 decay into four leptops, such as electrons and muons. Electrons and photons will be detected by the Ecal. 130

Taken from K.W. Bell et al., "Vacuum Phototriodes for the CMS Electromagnetic Calorimeter Endcap," IEEE

Transactions on Nuclear Science, vol. 51, no. 5, pp. 2284-2287, 2004

Figure 1: Schematic View of CMS Electromagnetic Calorimeter

As the beam comes in on-axis, the majority of the beam products are produced just off-axis. This means 131 that the endcaps receive the highest radiation dosage, and the detectors need to be especially hardened 132 against neutron radiation. The PbWO₄ crystals scintillate in the visible spectrum, near 420 nm. The 133 faceplates of the VPTs are made of a radiation-hard UV-transmitting borosilicate glass. Glass tends to 134 darken when exposed to neutron radiation. The glass used for the VPT faceplates is manufactured in small 135 batches and is proven to have less than 10% transmission loss after a dose of 20 kGy over a 48 hour period 136 using a ⁶⁰Co source, prior to being accepted for use in VPT production. 137

The exact performance characteristics of VPTs under extended optical loads in strong magnetic fields are 138 still being studied. The University of Virginia has previously studied their performance under temperature 139 variation, and also under a non-axial magnetic field (§4.3.1 Further Reading.) We are currently (Summer 140 2010) studying their long term response behavior, which has been shown to decay over time. 141

2.2**Experimental Setup**

The experimental setup at UVa has two main sections: The PXI Crate and the Rig. The PXI Crate sends 143 signals from its ② Field Programmable Gate Array (FPGA) module to the rig's LED boards. The boards 144 send a photon pulse to VPTs housed inside a 3.8 T magnetic field, and the VPT translates those photons 145 into a charge on its anode. The anode signal is amplified by a Stephenson amplifier, and that amplified 146 signal is sent back to the PXI Crate's (3) Switch. The PXI Crate then processes and records the signals. 147

117 118

Conceptually part of the rig, a high voltage supply provides a +800 V and +600 V potential difference to the VPT's anode and dynode, respectively. A low voltage supply provides power to the LED pulser boards and the Stephenson amplifier.

Figure 2 is a conceptual view of the conduits between the components of the rig. The "Amp" branch is a simplification. Only the VPT anode connects to the amp, which then connects to the (7) Switch. The VPT cathode bypasses the amp and connects to the (3) Switch. The PIN diode (§2.2.2 VPT Branch), part of the VPT node here, also bypasses the Amp to connect to the (7) Switch.

† Conceptual node; anode only

Figure 2: Rig Connections

2.2.1 LED Branch

155

170

The FPGA sends three TTL signals to a set of powered line driver chips (74LS241N and 74LS241PC), which	156	
then drives the TTL signals over BNC cables to the powered LED board. Each TTL signal corresponds to	157	
a single LED. (§4.2 LED Pulser Boards [FIXME])	158	
Load Signal is a simple simulated collider beam signal, intended to represent photon activity during beam	159	
events.	160	
Soak Signal is a faux load between beam events to maintain the VPT's response curve.	161	
Reference Signal is a measurement pulse inserted between the load and soak pulses to measure the VPT's 1		
response characteristics.	163	
Each of the three optical signals that the LED board emits are multiplexed (muxed) into five different	164	
optical fibers, and terminate in light-sealed boxes containing a VPT and a PIN diode. The PIN diode's signal	165	

optical fibers, and terminate in light-sealed boxes containing a VPT and a PIN diode. The PIN diode's signal can be used to make adjustments do to variations in LED light output on a pulse-by-pulse basis. The light from each fiber is projected onto the entirety of the VPT's photocathode. So, in total, each VPT receives three fibers (one from each LED), and there are five PIN diodes (one for each VPT) acting as references for LED light output.

2.2.2 VPT Branch

A VPT (§4.3 Vacuum Photo-triodes) is a single stage photomultiplier. The VPT's photocathode, dynode, ¹⁷¹ and anode accumulate charge as light impacts the photocathode, with the most charge accumulating on the ¹⁷² anode. As photons strike the photocathode, electrons are liberated. A large potential of +600 V is driven ¹⁷³ from the photocathode to the dynode, The current from the VPT's anode and cathode are ultimately routed ¹⁷⁴

Figure 3: Signal Path in Teststand

to the PXI Crate's switches, and then on to the crate's DMM or oscilloscope. Before that, they go through an amplification stage.

The VPT's anode is connected directly to a Stephenson amplifier (§4.1 Amplifier Board [FIXME]), which connects to the 7 high-frequency switch. The PIN diode signal passes unmodified to that same 7 highfrequency switch. The cathode signal cables connect to a distribution box near the PXI Crate. The distribution box then routes their signals to the terminal block on the 3 low-frequency switch. All of these signals leave the rig over BNC cables before terminating at or adjacent to the PXI Crate.

Figure 4: Distribution Box for Cathode Signal to Terminal Block

A temperature and humidity monitor is mounted next to the rig, and a single cat5 cable carries power to it and returns its readings to the (3) low-frequency switch via the distribution box. It connects via MOLEX connector next to the cathode signal BNC connectors.

Equipment

3 Superconducting Solenoidal Magnet

Figure 5: Top-down external view of Superconducting Solenoidal Magnet

The laboratory at HEP houses a Type-I superconducting solenoidal ("supersolenoid") electromagnet 188 wired for persistent operation. Lacking the flux-resistive characteristics of Type-II superconductors, a Type-189 I superconducting electromagnet is able to maintain a constant field over the course of years, rather than 190 the weeks to months of a higher temperature Type-II supersolenoid. However, like all known Type-I super-191 conductors, its critical temperature lies just north of 4K, necessitating that it be cooled with liquid helium 192 (LHe). 193

Similar to other small LHe cryogen systems, the supersolenoid uses a three-chamber system. The outer 194 chamber is under partial vaccum to insulate the interior chambers from ambient temperature. The middle 195 chamber is filled with liquid nitrogen to cool the interior chambers to a maximum of 78 K. The innermost 196 chamber, which houses the superconducting solenoid, is filled with liquid helium. Liquid helium comes into 197 direct contact with the supersolenoid. 198

Superconducting magnets have a number of significant advantages over ferromagnetic solenoids. Operat-199 ing at high currents, they can be relatively compact compared with their ferromagnetic cousins. Of practical 200 benefit in the lab, their interior (where the field direction and magnitude is nearly uniform) can be empty 201 and externally accessible, as in our lab. Ferromagnetic solenoids must house a ferromagnetic voke along 202 their axis to achieve the field strengths of supersolenoids. When wired in persistent mode, a supersolenoid 203 requires no additional electrical power and may remain at full strength while disconnected from a power 204 source indefinitely. While in persistent mode, a supersolenoid's field is more stable than a ferromagnetic 205 solenoid, which is practically advantageous when measurements must be taken over extended periods. 206

3.1Cryogen System

Maintenance of the superconductor's cryogen system is detailed in §13 Maintainence. The cryogens boil off, 208 and need to be monitored regularly, as detailed in §13.2 Measuring Cryogen Levels. 209

Liquid Nitrogen 3.1.1

The liquid nitrogen boils off at a rate of 10% per day when it is nearly full. The rate increases somewhat as 211 the tank approaches empty. It's generally good policy to keep the LN2 level as high as possible, filling on 212 Mondays and Fridays in case a fill must be missed for some reason. 213

The liquid nitrogen is usually delivered in 240 L dewars, such as the Taylor-Wharton XL-65 dewar. For filling instructions, see §13.3 Filling LN2 Cryogen. 215

Liquid Helium 3.1.2

The liquid helium boils off at a rate of 10% per week. One full 250L liquid helium dewar will fill the 217 magnet's tank from 20% to around 95%. For filling instructions, see §13.5 Filling LHe Cryogen. 218

187

210

207

214

3.2 Warnings

AVOID proximity to the magnet if you carry medical equipment, including remote monitors and pacemakers. 220

AVOID contact with the outer casing while the high voltage is active. The central cavity of the magnet houses high voltage equipment. Although the outer casing of the magnet *should not* carry an electric should be powered down before touching the outer casing of the magnet or the rig. 222

AVOID bringing magnetic materials near the magnet. The strength of the magnetic field grows inversely to the *cube* of distance—that is, much faster than intuition may suggest. Screwdrivers, metallic watches, and even metal glasses have been known to be pulled off of individuals passing by the magnet. *Remember to remove your wallet before approaching the 10 000 gauss line near the magnet*, because it *will* erase your credit cards.

The Rig 4

The rig is a mounting system attached to the superconducting magnet. It includes mounts for the VPTs 232 themselves, in addition to the LED pulser boards and the Stephenson amplifiers. 233

The current rig was assembled during the 2009–2010 school year by Michael Balazs, Brian Francis, and 234 Benjamin H. "BH" Kent (Associate Machine Shop Foreman). It features a number of improvements over 235 the previous rig: 236

It can accomodate up to five (5) VPTs at once, up from two. It also has a notched lever on the rear to 237 rotate the VPTs from $-25^{\circ} \rightarrow +25^{\circ}$, up from $0 \rightarrow 23^{\circ}$. 238

Figure 6: VPT Angle Adjustment Lever

The LED boards are now mounted inside the field near the VPTs, clearing a large amount of floorspace 239 that was used for an articulating arm that protruded out of the field and limited the angle of rotation 240 available for the VPTs. A new housing has been constructed for the LED boards, VPTs, and Stephenson 241 amplifiers. 242

4.1 Amplifier Board [FIXME]

The Vacuum Photo-Triodess (VPTs) are connected directly to a high-speed low-noise charge amplifier. At 244 the heart of the amplifier circuit is a National Semiconductor CLC428 (datasheet), which is the "Stephenson 245 pre-amp chip." [FIXME] (Talk to Mike. Having trouble following paper trail.) 246

4.2	LED Pulser Boards [FIXME]	247
FIXM	E] The LEDs in use are probably 5mm LED RL5-B5515.	David Phillips et al] 248

231

243

4.3 Vacuum Photo-triodes

The electromagic calorimeter (Ecal) is composed of scintillators and scintillator detectors. The scintilators 250 are transparent PbWO₄ crystals. These crystals are relatively weak scintillators, producing only ~50 photons 251 per MeV. [K.W. Bell, et al.] As such, to reach the energy resolutions needed by CMS the photodetectors 252 must have a built-in gain mechanism with low noise production. In the barrel of CMS, Avalance Photo-253 Diodes (APDs) are used. However, in endcap, where radiation levels much higher, Vacuum Photo-Triodes 254 (VPTs) are used. 255

Figure 7: Photograph of Vacuum Photo-Triode

A Vacuum Photo-Triode (VPT) is a specific electronic light sensor with a built-in photo-electron multiplier effect. Like a photodiode, it exploits the photoelectric effect to liberate electrons with incoming photons. As photons strike the photocathode, electrons are ejected. (The photocathode has effectively infinite current to replenish its electrons.) In addition to the energy from the incident photon, the electrons are imparted with an additional 1400 eV of potential energy from the high voltage applied to the anode and dynode. 260

Figure 8: VPT Electron Action

The emitted photoelectron falls towards the anode and may miss the anode mesh and collide with ²⁶¹ the dynode, causing secondary electron emissions which will fall back towards the anode. If the initial ²⁶² photoelectron hits the anode mesh, it may also cause secondary emissions which will impact the dynode and ²⁶³ cause tertiary emissions to fall back to the dynode. The electrons continue falling up and down the potential ²⁶⁴ energy well causing secondary emissions until their kinetic energy at the anode is less than the work function, ²⁶⁵ and so get absorbed without secondary emissions. This results in a rapid rise in output (anode) current ²⁶⁶

followed by a slower fall off. This process is extremely fast, returning to zero current from a pulse of 420 nm ²⁶⁷ light in around 200 ns. ²⁶⁸

The 200 ns response time of VPTs makes them acceptable for use in CMS, which operates at 40 MHz $_{269}$ (T = 25 ns). The chance of beam products interacting with the same barrel crystal before complete recovery $_{270}$ is small, and the occasional overlapping event can be detected accounted for. $_{271}$

Figure 9: VPT Electron Potential Well (qualitative)

Figure 10: VPT Pulse Shape

When we test a VPT at HEP, we send a pulse of light from a single source (an LED) down at least two different fibers. One fiber illuminates the photocathode of the VPT, while the other illuminates a standardized PIN diode. We use the PIN diode's output as a reference for the light input to the VPT. We can then calculate the gain, or the amount of charge amplification the VPT provides.

VPTs have a number of interesting characteristics that need to be studied. One of the reasons VPTs 276 were chosen is that they continue to function in strong non-axial magnetic fields, due to their single-stage 277 photomultiplier design. However, they still exhibit varibility in their response within non-axial magnetic 278 fields. The field in CMS is not entirely uniform between the beam axis and the outer edges of the endcap. 279 Therefore, the relative gain of each VPT is affected by the direction of the magnetic field, which varies 280 continuously depending on how far from the beam axis the VPT is placed. 281

VPTs also demonstrate a burn-in effect which can sometimes be quite pronounced. The amplification VPTs produce degrades over time, so that the same pulsed photocurrent will result in less output days later. The effect is not permanent, however. The self-correcting behavior of VPTs was being studied at UVA in 2009 when an electrical failure of the old NIM crate damaged several instruments and interrupted the experiment.

4.3.1 Further Reading

287

• D.C. Imrie. Long-Term Behaviour Of Three Prototype Vacuum Phototriodes Operated With High Photocurrents. January 2000. 289

Figure 11: VPT Angle Repsponse Example

Figure 12: VPT Long Term Effect

• M.N. Achasov, et al. Compact Vacuum Phototriodes for operation in strong magnetic field. 26 February 2001.	290 291
• K.W. Bell, et al. Vacuum Phototriodes for the CMS Electromagnetic Calorimeter Endcap. October 2004.	292 293
• P.Adzic, et al. Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up. October 2008.	294 295
At UVA	296
At UVAC. Drown. Properties of Vacuum Photo-Triodes in a 4 T Magnetic Field. Spring 2008.	296 297
 At UVA C. Drown. Properties of Vacuum Photo-Triodes in a 4T Magnetic Field. Spring 2008. D.G. Phillips II, et al. A Measurement of the Temperature Stability of Vacuum Phototriodes for the CMS ECAL. 	296 297 298 299

5 High Voltage Supply

Our high voltage supply is made by CAEN. *CAEN* is one of the main companies responsible for the design and manufacturing of components in ATLAS, CMS, ALICE, and LHCb. To date, *CAEN* has supplied the LHC with 6138 units. The modular *CAEN* high voltage supply replaced an aging power supply in 2009. 304

Our high voltage modules are housed in an 8U-high 19 inch-wide *CAEN* SY1527LC *Universal Multichannel*³⁰⁵ *Power Supply System*, which acts as a chasis and system controller for the various installed modules. The³⁰⁶ SY1527 system has four main sections: On the front are the CPU and Front Panel section, and the Power³⁰⁷ Supply section. On the rear are the Board Section and the Fan Unit. The LC designation means "low³⁰⁸ cost," and refers to lack of a built-in LCD screen, compact switch, alphanumeric keyboard, and I/O Control³⁰⁹ section.³¹⁰

Figure 13: Front Panel of the SY1527LC System

The *Power Supply Section* houses up to four *power supply units*, which provide power to the whole system. We use one optional power supply in addition to the primary power supply. The *Board Section* houses up to 16 Channel Boards. We use two standard HV boards, which distribute high voltage to the experimental rig. However, the system is capable of housing other types of boards, including low voltage and generic I/O boards. (We do not use *CAEN* LV boards; for our needs they are cost prohibitive.)

The system may be controlled either locally or remotely. A small 7.7 inch color LCD and a standard PS/2 ³¹⁶ keyboard are attached to the system for local control. The system can be remotely controlled over RS232 ³¹⁷ (serial) or ethernet. Over ethernet, the system can be logged into via telnet. *CAEN* has also developed a ³¹⁸ C language library (CAEN HV Wrapper) for remotely monitoring and controlling system parameters over ³¹⁹ TCP/IP. (Currently, remote control is not set up.) ³²⁰

A key on the primary power supply (front, bottom-right module) may be set to *Off, Local*, or *Remote. Off* completely powers down the rig, and immediately kills any voltage supply channels without ramping down the voltage. *Local* powers on the system and provides local control via the LCD and keyboard. *Remote* sets the system to allow a remote power-on using NIM, RS232, or ethernet.

_

Model Number	Location	Description
SY1527LC	Chasis	Modular power supply chasis
A1531	Front	Primary chasis power supply
A1532	Front	Auxillary chasis power supply
A1833D	Rear	Positive high voltage supply
A1833N	Rear	Negative high voltage supply

 Table 2: CAEN Nuclear Components

X	DO NOT power down the system by turning the key on the primary power supply without first initiating	325
	a software-controlled ramp-down.	326

DO power down the rig by first setting all of the channels to ramp down, and then turning off the system with the key.

For detailed information on the SY1527 system see the CAEN SY1527 User Manual.

At present, only the positive HV channel board is used to supply +800 V and +600 V to the five VPT ³³⁰ anodes and dynodes, respectively. These ten cables run across the floor to the magnet and connect to the ³³¹ rig. ³³²

For further operating instructions, see §11 High Voltage Supply.

329

6 Low Voltage Supply

Most of the pieces of equipment in the rig have low voltage and current requirements. For our external ³³⁵ power supply, we use two *BK Precision* 9130 Triple Output Programmable DC Power Supplies. ³³⁶

Taken from BK Precision 9130 Manual.

Figure 14: BK Precision 9130 Front View

The *BK Precision* 9130 Triple Output Programmable DC Power Supply has three independent outputs ³³⁷ providing 0–30 V & 0–3 A on two channels, and 0–5 V & 0–3 A on a third. It can be remotely controlled over ³³⁸ USB or RS232. It is also rack mountable, at $2 U \times \frac{1}{2} U$. ³³⁹

Supply	Channel	Voltage	Current	Distributed to
1	1	12.0 V	0.665 A	LCD Monitor Power
1	2	12.0 V	0.082 A	LED Pulser Board Power, Humiditer Power
1	3	5.0 V	0.045 A	LED Pulser Board Voltage Bias, Trigger's Pulse Generator Chip Power
2 2 2	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	10.0 V 0.0 V Series	$\begin{array}{c} 0.421 \text{ A} \\ \left< \text{OFF} \right> \\ \text{CH1+3} \end{array}$	Supply 2 is wired in series to provide a ± 5 V supply relative to the ground shared by the Stephenson Amp and FPGA, rather than a floating ground.

Table 3: DC Power Supply Channel Configuration

For detailed information on the external power supplies, see the BK Precision 9130 Manual.

Table 3 lists the voltage each channel is set to, and what it is currently connected to. Table 4 lists the341cables which require low voltage supplies and where they're currently connected.342

The FPGA is capable of meeting the voltage and current requirements for the LED boards, and directly ³⁴³ connecting them would also allow the LED bias to be controlled directly by the FPGA. That would permit ³⁴⁴ us to control the photocurrent automatically. They were removed from the FPGA while tracking down a ³⁴⁵ source of signal noise, and may be safely re-attached to the FPGA at a later date. ³⁴⁶

The "Trigger Pulse Generator Chip" is a pair of a 74LS241N and 74LS241PC line drivers, chips designed to be able to drive signals over BNC cables. The trigger signals run from the FPGA to the generator chips and then on to the LED boards themselves. The FPGA isn't capable of driving the BNC cables directly. 349

334

Cable Name	Cable Pair	Voltage	Supply
	blue LED Bias	$\pm 5\mathrm{V}$	Supply 1, Ch 3
	green LED Bias	$\pm 5\mathrm{V}$	Supply 1, Ch 3
LED voltage	orange LED Bias	$\pm 5\mathrm{V}$	Supply 1, Ch 3
	brown LED Power	$\pm 12\mathrm{V}$	Supply 1, Ch 2
Stephenson An	$\pm 5 V$ to eart	h ground	Supply 2
	blue Trigger Pulse Gen	$\pm 5\mathrm{V}$	Supply 1, Ch 3
Local Power	brown Not used	$\pm 12\mathrm{V}$	Supply 1, Ch 2
Humiditer	green Power	$\pm 12\mathrm{V}$	Supply 1, Ch 2
LCD Panel	red & black Power	$\pm 12\mathrm{V}$	Supply 1, Ch 1

Table 4	: DC	Volt	age	Req	uire	ments
---------	------	------	-----	-----	------	-------

National Instruments

PXI Crate

7

7.1

350

351

356

The National Instruments PXI Crate is a programmable experimental test-stand capable of automating many aspects of an experiment. It can be configured to control the experiment, perform advanced analog and digital signalling and sampling, control power supplies, perform DAQ, process and export data, and more.

7.1.1 NI PXI-1042 Chasis

What we refer to as the "PXI Crate" or just "the crate" is a National Instruments (NI) NI PXI-1042 series 357 chasis and the NI-designed modules it houses. The chasis itself is a Compact 3U rack-mountable chasis 358 that provides Universal AC, a power overload breaker, air temperature regulation, and a removable modular 359 power supply. In most cases, replacing a faulty component can take seconds. 360

Taken from National Instruments NI PXI-1042 Series User Manual and Specifications

Figure 15: Front View of the PXI-1042 Chasis

The chasis backplane supplies several busses to each slot. First, all modules share the 64-bit CompactPCI-361 compatible PXI bus. Second, a Star Trigger Bus originates from Slot (2), and connects to the other six 362 peripheral slots. Third, a Local Bus connects all seven peripheral slots in a daisy chain; the left-local bus 363 signals on Slot 2 are used for *Star Trigger*, and the right-local bus signals on Slot (8) are not routed. The 364 Local Bus is 13-lines wide and can pass anything from high-speed TTL to analog signals up to 42 V. Fourth, 365 the Trigger Bus provides eight shared trigger lines to all eight slots. Finally, the chasis supplies a 10 MHz 366 system reference clock signal (PXI CLK10) independently to each peripheral slot. The clock signal is also 367 accessible externally via rear-mounted BNC connectors. 368

Figure 16: PXI Local Bus and Star Trigger Routing

7.1.2 Modules

The chasis at HEP is configured with the following modules, described in the following sections:

- /1 PXI-8104 Embedded Computer A full-featured embedded computer running Windows XP (down-371 graded from Windows Vista Business by default by NI). This module ultimately controls all the other 372 components in the crate. It hosts an RDP server for remote login. The maximum amount of RAM has 373 been installed, 2 GiB, as two SO-DIMMs of PC2-5300 1 GiB, 128 MiB×64, CL 5, 1.18 inch max (NI 374 part number 779302-1024). It also features a Celeron M 440 (1.86 GHz single-core), a 60 GB SATA 375 hard drive, and gigabit ethernet. As it occupies the System Controller slot, it is generally referred to 376 as the system controller in NI literature. For detailed information see the PXI-8104 User Manual. The 377 internal hard drive is only used for system and experiment software. All experimental data is stored 378 on the ReadyNAS. 379
- PXI-7851R FPGA Essentially a reprogrammable integrated circuit, the FPGA controls all the real-time trigger signals. The module itself has a break-out box connector, and the break-out box houses the connections to devices which receive external trigger signals. (Namely, the LED pulser boards.) The break-out box is an NI SCB-68.
- (3) [FIXME] 24-Channel two-wire Multiplexer Referred to as "the switch." Featuring a single large external port, the switch connects any of the 24 two-wire channels to the internal busses. The switching mechanism is software controlled. An NI TB-2605 multiplexing terminal block is currently mounted directly on it. This switch receives the cathode current and humiter signals and routes them to the DMM.
 [FIXME] This is either an PXI-2501 or PXI-2503 multiplexer.

(4) PXI-4110 DC Power Supply A software-controlled DC power supply, not currently in use.

- (5) PXI-4071 PXI Digital Multimeter A software-controlled Digital Multimeter.
- (6) PXI-5154 Digitizer/Oscilloscope A high frequency (2 GS/s) oscilloscope, optimized for automated testing.
 393
- (7) PXI-2593 16-Channel Multiplexer A 16-channel high frequency switching multiplexer, able to handle 394 frequencies from DC to 500 MHz. This switch receives the anode and PIN diode signals and routes 395

369 370

390

them to the oscilloscope.

so that they could communicate directly over the local bus?

396 397 398

399 400

401

7.2 LabVIEW

Oscilloscope.

FIXME] All signals requiring measurement are routed from this multiplexer to either the DMM or the

FIXME] Wouldn't it make more sense for this multiplexer to be adjacent to the 24-channel multiplexer

Figure 17: LabVIEW Block Diagram of Host - Main.vi

LabVIEW is a graphical programming environment used for developing programs called virtual instruments, or Virtual Instruments (VIs), which imitate physical instruments. LabVIEW uses a visual programming language called "G" for building virtual instruments. "G" is a data-flow driven language, as opposed to a procedural like C or functional language like LISP or Haskell. [FIXME] (rephrase) In LabVIEW program execution is determined by the availability of data to the components inside a VI. As such, LabVIEW's programs are inherently parallel, meaning that different parts of the program can run simultaneously. 402

To get started with LabVIEW right away, read the manual Getting Started with LabVIEW. This manual 408 is also available from within the LabVIEW 2009 "Getting Started" dialog when the application is launched, 409 in the right-hand pane under "Help." 410

For historical background on LabVIEW, see the Wikipedia entry.

The remainder of this section is a conceptual crash-course in LabVIEW. For hands-on practice, ... [FIXME] 412

7.2.1 Block Diagram and Front Panel

A Virtual Instrument (VI) is a program in LabVIEW for which LabVIEW provides a visual programming 414 interface. Every VI has a *front panel*, which is a visual representation of its inputs and outputs, and a *block* 415 *diagram*, which is a functional diagram of how to process its inputs and to produce its outputs. The actual 416 programming of a VI takes place in the block diagram. However, you generally start creating the VI from 417 the front panel, much like how you generally start writing a function with its interface or signature. 418

A VI may be made of atomic logic units, like numbers, arithmetic, and control structures like loops and conditional branches. It will contain any widgets you created on the front panel. It may also contain any number of additional VIs. VIs referenced within another VI are called "sub-VIs," for the sake of discussion, but are otherwise the same as any other VI.

.

413

1778	F		
2	F		

Figure 18: LabVIEW (default) Icon and Connection Panels

From the front panel, a small icon is visible in the upper right-hand corner of the window. This is how the VI appears when placed in another VI. If you right-click this icon from the front panel (only) and select "Show Connector" and then a component on the front panel, you'll reveal connection pins that you can assign to front panel components by clicking the pin and then a front panel component. If you use this VI as a sub-VI, you'll be able to fill in front panel inputs and read front panel outputs from another VI by using the pin connections.

The block diagram will automatically be populated with the required components for the front panel and the pin connections you've designated from the front panel. Connections between block diagram components can be made by clicking on the small pin-out location you wish to start from and the small pin-in location on the destination. A wire will be drawn from the source to the destination. The style (color, thickness, pattern) will indicate its type. LabVIEW will only allow you to complete connections between compatible types, but it will automatically insert conversion components for you, if possible. New components may be dragged onto the block diagram from the "Controls" palette.

The exact behavior produced by a left-click varies with the click's distance from an element. For instance, clicking adjacent to a wire splices a branching connection into the wire, while clicking exactly on the wire allows you to select the wire itself. The cursor will change to help you determine what will happen. 436

Figure 19: LabVIEW Arrangement Buttons

Because editing with the mouse can be a bit tedious, LabVIEW has a number of tools to automate a lot of large-scale housekeeping on block diagrams. Under the Edit menu, you can automatically Remove Broken Wires and Clean Up Diagram. In the toolbar of the block diagram, you'll find menus to align, distribute, group/layer, and clean up selected components. 440 441 442 442 444 444 444 444 444 444

7.2.2 Projects and VIs

A collection of LabVIEW files and [*non*-LabVIEW files] that you can use to create build specifications and deploy or download files to targets.

—Definition of *project* from *Getting Started with LabVIEW* 446

A project in LabVIEW is a somewhat informal collection of files which can aggregate dependencies and help build and deploy files to targets. A project is not even necessary for most tasks in LabVIEW and VIs can be designed and run without creating a project. This is a little different from a lot of development suites, which use projects to define the development environment. (VIs run in the proprietary LabVIEW runtime environment, which handles things like execution, compilation, and dependency resolution.) 447

You need to use a project if you need to build and deploy a file to a target, such as an FPGA or some 452 other statically programmed instrument. Other than that, projects have little to do with the programming 453 and running of VIs. 454

7.2.3 Documentation

There are a number of useful sources of documentation for LabVIEW.

One of the most useful tools is the Context Help, found under Help \rightarrow Show Context Help. This will 457 reveal a palette window that will give you information about whatever component you hover the mouse 458 over. For instance, when hovering over a wire it will tell you the data type the wire caries. If you hover over 459

443

444

445

455

a component on the block diagram, it will tell you what that component does, what its connections are, and which are optional. You can also get detailed help on anything you can get context help on by clicking the question mark on the lower edge of the context help window. (Select the component to keep the context help fixed on it.)

Usually the best way to find out how to do something new is to find an example. The example search $_{464}$ engine can be found in LabVIEW by navigating to Help \rightarrow Find Examples.... One of the directories listed $_{465}$ under "Browse" tab is called "Fundamentals," which will show you how to deal with the basics, such as basic data types, control structures, and file I/O. Going through most of the examples in this directory will help $_{467}$ you become familiar with the visual vocabulary of LabVIEW. $_{468}$

The official National Instruments forums are also a useful source of information.

In addition, the UVa Site License includes a support contract. For help ... [FIXME].

7.3 ReadyNAS (RNAS)

The ReadyNAS (RNAS) is a ready-made NAS solution. NAS is an acronym for *Network-Attached Storage*, 472 a file-level (as opposed to block-level) remote storage system. The NetGEAR ReadyNAS NV+ acts as a network filesystem for the PXI Crate in addition to the crate's native filesystem on its local SATA hard drive. The RNAS is backed up daily by Brian Wright. 475

Much of your interaction with the crate will happen indirectly, via the RNAS. You'll usually want to edit VIs locally and then upload them to the RNAS when its time to update the experiment's software. VIs are usually programmed to log their data to the RNAS, so you'll retreive the latest data from the RNAS as well.

The main exception to this is any VI which requires access to the crate's peripheral hardware, such as the FPGA, DMM, oscilloscope, or switches. These components need to be programmed and tested from LabVIEW on the PXI Crate itself, as in §9.1 Logging into the PXI Crate (RDP).

The RNAS is configured for FTP access. For FTP directions, see §8.2 Installing the VPT VIs and 483 §8.3 Getting the Latest Data. 484

X DO NOT upload VIs without first making sure that LabVIEW on the crate has closed those VIs.

X DO NOT directly edit VIs or use viewing or processing VIs to view or edit data directly from the RNAS if you have chosen to mount the remote filesystem. You may corrupt LabVIEW state (on the crate or your own computer), or cause availability or timing errors in ongoing experiments.

DO make a local copy of any VI or data you wish to use. You may safely copy data files while they are 489 being written to.

471

469

Operations Manual

8 Getting Started	493
8.1 Installing LabVIEW 2009	494
You will need access to LabVIEW to start and stop experiments, to view data, and to export data. As of Summer 2010, you'll need LabVIEW 2009. The National Instruments site-licensed installation discs are located in the HEP building in a small square black CD-sized zipper pouch with a blue spine. The pouch's spine is labeled National Instruments Academic Site License 2009: Software for Classrooms, Labs & Research.	495 496 497 498 499
8.1.1 Mac	500
Locate the white DVD labeled "NI LabVIEW 2009." This disc also bears the label "Third Quarter 2009" on the left-hand side. Insert the disc and install the package titled LabVIEWPro2009.mpkg. You're done.	501 502
8.2 Installing the VPT VIs	503
Copy the most recent VPT VIs from the ReadyNAS to a convenient location. Their remote location is:	504
ftp://hep-diskarray.physics.virginia.edu/teststand/VPT Stability Scanner/v3.0 - 5 VPTs	505
All data is stored on the ReadyNAS (see 7.3) and accessible via FTP. Open an FTP connection to	506
ftp://hep-diskarray.physics.virginia.edu/	507
The "/teststand/" directory contains all of the data which is intended for use by the PXI Crate. To install the latest version of the VPT Stability Scanner VIs, download the directory	508 509
/teststand/VPT Stability Scanner/v3.0 - 5 VPTs	510
If you're unfamiliar with FTP, you may use any of the following methods:	511
8.2.1 Method 1: Using Finder	512
First, connect to the server. To do this for the first time:	513
1. Select Finder from the Dock.	514
2. Press \mathfrak{K} (or select $Go \rightarrow Connect$ to Server from the menubar)	515
3. Enter the server address as ftp://teststand:labview@hep-diskarray.physics.virginia.edu	516 517
4. (optional) Click the "+" button to add it to your favorite servers.	518
5. Press the Connect button.	519
If you've added the server to your favorites and later "eject" the server, you can reconnect by the following procedure:	520 521
1. Select Finder from the Dock.	522
2. Press \mathfrak{K} (or select $Go \rightarrow Connect$ to Server from the menubar)	523
3. Select ftp://teststand:labview@hep-diskarray.physics.virginia.edu from the favorites list.	524
4. Press the Connect button.	525

Opening an FTP site in Finder works exactly like any regular folder in Finder. If you like, you can switch the view to "Browser Mode" by hitting the clear oblong oval in the far upper right hand corner of the window.

Navigate to teststand \rightarrow VPT Stability Scanner and drag v3.0 – 5 VPTs to a convenient location.

Note: Do not attempt to view data on the remotely mounted server. Copy the VIs and the data to your local hard drive before working on them. It was discovered through trial and error that it's best to view the data on a machine separate from the one that is taking data. Working non-locally with data or VIs while an experiment is running may cause problems for you or the experiment. 533

8.2.2 Method 2: Using wget

534

539

540

541

542

543

544

545

546

547 548

549

550

551

557

562

529

If you have a unix-like operating system (Linux, Mac OS X), or use Cygwin on Windows, and are comfortable on the command line, wget is an excellent tool to use. This method duplicates the directory structure of hep-diskarray, which can be very convenient for maintaining consistency between your local copy and the PXI Crate. Open a terminal and cd to a directory where you'd like to store your mirrored directories. 536

To mirror only the latest running VPT VI software, run:

```
wget -m "ftp://teststand:labview@hep-diskarray.physics.virginia.edu\
/teststand/VPT Stability Scanner/v3.0 - 5 VPTs"
```

This will copy the VIs (*.vi) in the following directory structure to your working directory:

```
hep-diskarray.physics.virginia.edu/
teststand/
VPT Stability Scanner/
v3.0 - 5 VPTs/
C/
...
FPGA Bitfiles/
...
*.vi
```

If you don't want to copy the directory structure and just want the VIs themselves, cd to your own directory and run a command like the following to copy the desired files directly without the directory structure above. 554

wget "ftp://teststand:labview@hep-diskarray.physics.virginia.edu\	555
/teststand/VPT Stability Scanner/v3.0 - 5 VPTs/*.vi"	556

8.3 Getting the Latest Data

The location of the latest data is always subject to change. All data is usually located in a /data/ directory under the particular experiment's main directory on the RNAS, such as /teststand/VPT Stability Scanner/. 559 Check with the current experiment maintainer for the latest location. For demonstration purposes, we'll assume the latest data is located on the RNAS in the following files: 560

/teststand/VPT Stability Scanner/data/Taken with v3.0/Raw Data/	563
VPT2181.dat	564
VPT2182.dat	565
VPT2183.dat	566
VPT2814.dat	567
VPT2185.dat	568

8.3.1 Method 1: Using Finder	569
If hep-diskarray.physics.virginia.edu is not already mounted, mount it. If you're not sure if it's mounted:	570
1. Open Finder from the Dock.	571
2. Press 企業C	572
3. Look for hep-diskarray.physics.virginia.edu in the window presented.	573
Now you're ready to locate and copy the data.	574
$1. \ Navigate \ to \ hep-diskarray.physics.virginia.edu \rightarrow teststand \rightarrow VPT \ Stability \ Scanner \rightarrow data \rightarrow Taken \ with \ v3.0 \rightarrow Raw \ Data$	575 576
2. Select VPT2181.dat through VPT2185.dat.	577
3. Copy them to a convenient location on your hard drive.	578
8.3.2 Method 2: Using wget	579
Note: The bash shell is assumed. To mirror the most recent data for local viewing, run:	580 581
wget -m "ftp://teststand:labview@hep-diskarray.physics.virginia.edu\ /teststand/VPT Stability Scanner/data/Taken with v3.0/Raw Data/VPT218[12345].dat"	582 583
If you don't want to copy the directory structure, just drop the "-m" option.	584

9 PXI Crate

9.1 Logging into the PXI Crate (RDP)	586
9.1.1 Mac	587
You'll need to download and install Microsoft's Remote Desktop Connection Client for Mac.	588
1. Launch Remote Desktop Connection for Mac.	589
2. In the "Computer:" field, enter the IP address 128.143.196.230. Press Connect.	590
3. When prompted, use the username administrator and password !UVAVPT	591
If desired, you can make local (Mac) hard drives and printers available to the PXI Crate while you're logged in by editing the connection. (File \rightarrow Edit a Connection)	592 593
9.1.2 Linux	594
You'll need to download and install rdesktop for accessing Windows Termainal Services. Rdesktop is available through the package management systems of most distributions, such as Debian, Ubuntu, and Redhat. A Gnome frontend to rdesktop is also available, called grdesktop. These directions assume rdesktop:	595 596 597 598
1. [FIXME]	599
9.2 Launching LabVIEW	600
9.3 Opening Project VPT Stability	601
9.4 Starting Data Acquisition	602
1. Open the <i>VPT Stability</i> project as in $\S9.3$.	603
2. Open the Host - Main.vi VI from the project file viewer.	604
3. Press the $rightarrow$ Run Once button. You will be prompted for information:	605
• VPT 1–5 reference numbers	606
• Angle in field (degrees)	607
• Min. wait time (seconds)	608
• Load on/off time (hours)	609
9.5 Stopping Data Acquisition	610
1. If necessary, log into the PXI crate as in §9.1 Logging into the PXI Crate (RDP).	611
2. Locate the Host - Main.vi window, listed under the Window menu of any LabVIEW window. The front panel is preferable, but not necessary.	612 613
3. Hit the Stop button.	614
9.6 Restarting Data Acquisition	615
Follow this procedure if you were taking data and wish to start over with the same VPTs:	610
1. If desired conv the old data files to a safe location	617
2 Delete the original data files	610
3. Begin following §9.4 Starting Data Acquisition.	619

9.7	Resuming Data Acquisition	620
Follo	w this procedure if you wish to resume recording data to the same files after an interruption:	621
1.	If necessary, log into the PXI crate as in §9.1.	622
2.	Locate one of the data files and open it in a text editor. Copy the first column of the last line. This is the time offset to resume at.	623 624
3.	If necessary, start LabVIEW (§9.2), open project VPT Stability (§9.3), and/or open Host - Main.vi.	625
4.	On the top row of the Host – Main.vi front panel is a text input box labeled Test Start Time Offset. Click to edit the contents and paste the time offset from step 2.	626 627
5.	Press the \textcircled{P} Run Once button. When prompted, enter the original VPT numbers, and the rest of the information as before.	628 629
9.8	Shutting Down The Crate (software)	630
Follo	w this procedure if you wish to shut down the PXI Crate to later reboot it:	631
1.	If necessary, log into the PXI crate as in §9.1 Logging into the PXI Crate (RDP).	632
2.	If necessary, shut down DAQ as in §9.5 Stopping Data Acquisition.	633
3.	Close LabVIEW. [FIXME] menu commands; do not save VIs?	634
4.	$[\texttt{FIXME}] \ \ \text{Click the start button and navigate to } \texttt{Start} \rightarrow \texttt{Logout}, \ \texttt{then choose Power Off when prompted}.$	635
9.9	Powering On Hardware	636
1.	Locate the power button on the lower left-hand side of the front of the PXI Crate. Next to the button is an LED light.	637 638
2.	If the light near the button is lit, the crate is already powered on. If it is not lit, press the power button.	639 640
9.10) Powering Down Hardware	641
1.	First perform a software shutdown as in §9.8 Shutting Down The Crate (software).	642
2.	Check if the power LED is still lit. It is located on the lower left-hand side of the front of the PXI Crate, near the power button.	643 644
3.	If still powered, press the power button once.	645

10 Low Voltage Supply	646
For operating instructions, including troubleshooting, reference the BK Precision 9130 User Manual, or the BK Precision Model 9130 product page.	647 648
10.1 Panel Controls	649
The On/Off key controls the output state (on/off) of all three channels simultaneously. To control the output state of an individual channel, use the number keys 1–3. Use the 1–3 keys to set the output state of channels 1–3. Similarly, use 4–6 keys to set the voltage, and 7–9 keys to set the current for each channel.	650 651 652 653
10.2 Setting Voltage	654
There are three different methods to set the voltage:	655
1. Press V-set. Enter a numeric value with the keypad, then press Enter.	656
2. Press V-set. Then use the $\uparrow \downarrow$ arrow keys to select a channel. Adjust the voltage with the knob.	657
3. Press the 4, 5, or 6 key to select channel 1, 2, or 3. Then enter a numerical value on the keypad. Then press Enter.	658 659
10.3 Setting Current	660
There are three different methods to set the current. They are identical to the methods to set the voltage, except that you press $I-set$ instead of $V-set$, and the keys 7, 8, or 9 instead of 4, 5, or 6.	661 662
1. Press I-set. Enter a numeric value with the keypad, then press Enter.	663
2. Press I-set. Then use the $\uparrow \downarrow$ arrow keys to select a channel. Adjust the voltage with the knob.	664
3. Press the 7, 8, or 9 key to select channel 1, 2, or 3. Then enter a numerical value on the keypad. Then press Enter.	665 666
10.4 System Set	667
System Set is a menu available from the Menu button. One of the things it allows you to do is set channels for series or parallel operation. Supply two should have Out Serial Set set to $1+3$. For serial use, Ch1- should be connected to Ch3+, and Ch1+ and Ch3- should connect to the load. (Ch 2+3 serial operation is not permitted.)	668 669 670 671

11 High Voltage Supply

All high voltage supply directions are carried out with the small LCD display and keyboard attached to the 673 large red CAEN Nuclear SY1527LC rack-mounted system. 674

Verifying Cable Configuration 11.1

Inspect the back of the high voltage unit. The module inserted in the middle, marked "12 CH POS" near 676 the bottom in blue, should have ten cables connected to channels 0 through 9. Verify the layout by reading 677 the cable labels and comparing them with Table 5 (p. 30). 678

Channel	Cable Label	Channel Name	Voltage	Current
0	HV Anode 1	VPT1-Anode	$800.00~\mathrm{V}$	20.00 µA
1	HV Dynode 1	VPT1-Dynode	600.00 V	20.00 µA
2	HV Anode 2	VPT2-Anode	800.00 V	20.00 µA
3	HV Dynode 2	VPT2-Dynode	600.00 V	20.00 µA
4	HV Anode 3	VPT3-Anode	800.00 V	20.00 µA
5	HV Dynode 3	VPT3-Dynode	600.00 V	20.00 µA
6	HV Anode 4	VPT4-Anode	800.00 V	20.00 µA
7	HV Dynode 4	VPT4-Dynode	600.00 V	20.00 µA
8	HV Anode 5	VPT5-Anode	$800.00~\mathrm{V}$	20.00 µA
9	HV Dynode 5	VPT5-Dynode	$600.00~\mathrm{V}$	$20.00 \ \mu A$

Table 5: High Voltage Group 01

Inspect the rig inside the superconducting solenoidal magnet. When viewed from the rear, which faces 679 the exterior door, the high voltage cables enter from the front (opposite) side and are attached to the VPT 680 mounting rig on the left-hand side. Visually verify that the top five cables facing you are labeled "HV Anode 681 1" through "HV Anode 5" from top to bottom. Verify from the front side that the top five cables facing you 682 on the right-hand side are labeled "HV Dynode 1" through "HV Dynode 5." 683

11.2 Verifying the Voltage Settings	684
From the front of the rack, examine the color LCD monitor below the high voltage unit. Verify that the voltage settings correspond to Table 5 (p. 30).	685 686
11.3 Killing the High Voltage	687
\bigwedge AVOID killing the high voltage unless it's worth the risk of damaging the equipment.	688
1. Turn the key to the off position.	689
✓ DO ramp the voltage down before shutting the system down whenever possible. See §11.4 Ramping Down the High Voltage for ramp-down instructions.	690 691
11.4 Ramping Down the High Voltage	692
[FIXME] Placeholder until detailed walkthrough can be practiced	693
1. Toggle group mode from the Groups menu.	694

2. Turn off any channel; while group mode is enabled all grouped channels will ramp down together. 695

672

11.5 Ramping Up the High Voltage	696
[FIXME] Placeholder until detailed walkthrough can be practiced	697
1. Toggle group mode from the Groups menu.	698
2. Turn on any channel; while group mode is enabled all grouped channels will ramp up together.	699
11.6 Turning Off the High Voltage System	700
The system rarely needs to be entirely turned off. Channel boards and power supplies may be hot swapped and channels only need to be ramped down before disconnecting cables. However, there is an additional safety factor in powering the entire system down before tampering with high voltage.	701 702 703
1. Ramp down the voltage (see 11.4, p. 30).	704
2. Turn the key to the off position.	705
11.7 Turning On the High Voltage System	706
To turn the high voltage on from a power-off state:	707
1. Turn the key to the <i>local</i> position.	708
2. Ramp up the voltage (see 11.5, p. 31).	709
Note: In the future, the key may need to be turned to remote. Check with the experiment maintainer if there are additional cables connected to the front panel.	710 711

12 Vaccum Photo-triodes (VPTs)

12.1 Cleaning

Only the photocathode face needs to be cleaned. Fingerprints should be wiped away using disposable lens 714 cloths. A small green cardboard box of *Kimwipes Delicate Task Wipers* is usually located near the rig for 715 easy access. 716

Figure 20: Kimtech Science Kimwipes

12.2 Mounting VPTs

Each VPT has three cables connected to the anode (tan/white), dynode (blue), and cathode (gold/yellow). 718 The cathode is sometimes labeled with the letter "K" from the Russian spelling. The dynode and cathode 719 colors can be remembered with the euphemistic mnemonic as "KY dB." 720

712

713

13 Maintainence	721
13.1 Schedule	722
This section lists tasks which must be done regularly to maintain the experimental equipment or ongoing experiments. The following vocabulary is used in this section:	723
DAILYOnce per day, at any time unless otherwise specifiedSEMI-DAILYEvery other dayBIWEEKLYTwice a week, or every 3-4 daysMONTHLYOnce per monthAS NEEDEDAs often as necessary; frequency determined by another maintenance step	724
13.1.1 Under All Conditions	725
The following tasks must be carried out whether or not an experiment is currently under way.	726
DAILY Measure cryogen levels AS NEEDED Fill LN2 cryogen AS NEEDED Fill LHe cryogen MONTHLY Measure magnetic field strength	
13.1.2 Experiment: VPT Stability	727
The following tasks are only required during VPT Stability experiments.	728
DAILY Verify DAQ is still running BIWEEKLY Examine data for experimental errors	
13.2 Measuring Cryogen Levels	729
Cryogen levels should be checked daily. Under normal conditions the cryogen evaporation rate is virtually constant. However, checking daily will reveal if a fill was done improperly, or if a quench occured.	730 731
1. Locate the cryogen lab notebook near the cryogen gauges.	732
2. Record the current date and time in the notebook.	733
3. Read the liquid nitrogen gauge, which is always on. Record the measurement in the notebook.	734
4. To begin taking a liquid helium measurement, press the green power button to turn on the gauge.	735
5. Wait several seconds, then press the black "MAN" button to take a measurement. The "Sample" light will light up.	736 737
6. Wait until the "Sample" light goes out, then read the measurement from the LCD display. It's a percentage.	738 739

7. Record the LHe measurement in the notebook.

8. Press the green power button to turn off the LHe gauge.

X DO NOT leave the liquid helium gauge powered on. It will unnecessarily heat the cryogens and cause them to boil off more rapidly. 743

740

13.3 Filling LN2 Cryogen	744
\checkmark DO consider filling Monday and Friday, and always well before reaching 10 % capacity.	745
1. Measure and log the cryogen levels, as in 313.2 .	746
2. Climb up the ladder and unscrew the wingnut from the c-clamp at the base of the black ventile tower.	ation 747 748
3. Remove the c-clamp, ventilation tower, and the o-ring beneath the tower.	749
4. Climb down and slowly turn the blue valve (connected by pipe to the magnet). Allow the LN2 to slowly at first to cool the valve and piping, then open the valve all the way. A constant plume of v vapour will shoot from the valve where the ventilation tower was removed.	o flow 750 white 751 752
5. Return to the LN2 gauge and monitor the fill. It takes $10\mathrm{min}$ on average to fill $25\%.$	753
6. Dust frost off the ventillation tower valve every $5-10 \min$ or so.	754
7. Once the gauge reaches 100 %, return to the LN2 dewar and shut off the blue valve.	755
8. Climb up the ladder and thoroughly clean the tower valve.	756
9. Replace the o-ring, ventillation tower, and re-attach the c-clamp.	757
10. Firmly tighten the wingnut on the c-clamp by hand.	758
11. Return to the cryogen gauges and record the 100% LN2 level, as in §13.2.	759
X DO NOT forget to replace the o-ring. Failing to replace the o-ring is the easiest mistake to make de an LN2 fill and will cause LN2 to boil off more rapidly.	uring 760 761
\checkmark DO move the empty dewar through the computer room and out the doors to the concrete patio.	762
13.4 Ordering LN2 Cryogen	763
[FIXME] Chris in the stock room in the Beams building handles orders.	764
13.5 Filling LHe Cryogen	765
✓ DO fill between 20−30 % capacity to use an entire LHe dewar.	766
[FIXME] Placeholder for practiced fill	767 768
\checkmark DO move the empty dewar through the computer room and out the doors to the concrete patio.	769
13.6 Ordering LHe Cryogen	770
Mike (HEP) handles orders. Takes 2–3 weeks.	771

Glossary

772

BNC: A common type of RF connector for terminating coaxial cable. Cables terminated at both ends by BNC connectors are colloquially called BNC cables. BNC connectors are 50 Ω terminators. BNC stands for Bayonet Neill-Concelman. « 5 »	773 774 775
DAQ: An abbreviation for Data Acquisition, DAQ refers to the process of capturing digital representations of physical processes. By definition DAQ, involves (typically analog) sensors, circuitry to translate the analog signal into a digitizable form, and an ADC (Analog to Digital Converter). Colloquially, DAQ can also refer to the process of capturing those digital signals and recording them. «18 »	776 777 778 779
FPGA: Field Programmable Gate Array: A Reconfigurable I/O (RIO) device; essentially a programmable integrated circuit (IC). It can be programmed through LabVIEW (from the system controller only) to provide real-time signalling, triggering, or processing. « 3, 19 »	780 781 782
$\label{eq:label} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	783 784
LED board: LED pulser board designed and built by Mike Arenton. Receives electrical triggers from the PXI Crate and sends optical pulses to the VPTs and PIN diodes. « 3 »	785 786
$eq:MOLEX: Molex is a large supplier of electronic interconnects. Molex connector is a vertacular term for the two-piece interconnects manufactured by Molex. < 5 \ >$	787 788
NI: National Instruments «18, 19»	789
PXI Crate: The National Instruments crate and contents, including hardware modules and software to control the experiment and perform data acquisition (DAQ). «3, 18, 22, 24, 25 »	790 791
quench: An abnormal termination of magnet operation, caused by part of the superconducting material entering the normal resistive state. A quench has not yet occured under HEP supervision. A quench should not damage the magnet itself, but it can induce kilo-volt spikes and arcing and the rapid boil-off of cryogens can cause asphyxiation. « 33 »	792 793 794 795
ReadyNAS: See RNAS «19»	796
rig: Aluminum mounting brace attached to the supersolenoidal magnet, housing the LED pulser boards, VPT mounting enclosure, and anode amplifier boards. « 3 »	797 798
RNAS: ReadyNAS, a specific NAS product produced by Netgear. RNAS is a specific independent hardware module located in the HEP Computer Room [FIXME] . «22, 35 »	799 800
System Controller: Generic term for the device that is housed in slot \triangle of a National Instruments PXI chasis. This is almost always an Embedded Computer. «19»	801 802
VI: Virtual Instrument « 20 »	803
VPT: Vacuum Photo-Triodes «9»	804

 VPT VI: Literally Vacuum Photo-triode Virtual Instruments; Refers to the HEP software written in Lab-VIEW for the National Instruments hardware. Includes software and hardware logic. «24, 25 »
 806