Neutron beta decay observables (SM)

$$\begin{split} \frac{dw}{dE_e d\Omega_e d\Omega_{\nu}} &\simeq p_e E_e (E_0 - E_e)^2 \\ &\times \left[1 + \frac{\vec{p}_e \cdot \vec{p}_{\nu}}{E_e E_{\nu}} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_{\nu}}{E_{\nu}} \right) + \dots \right] \end{split}$$

where in SM:

$$\mathbf{a} = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}$$
 $A = -2\frac{|\lambda|^2 + Re(\lambda)}{1 + 3|\lambda|^2}$ $B = 2\frac{|\lambda|^2 - Re(\lambda)}{1 + 3|\lambda|^2}$ $\lambda = \frac{G_A}{G_V} \text{ (with } \tau_n \Rightarrow \mathsf{CKM} \ V_{ud}\text{)}$

also proton asymmetry: $C = \kappa (A + B)$ where $\kappa \simeq 0.275$.

$$\Rightarrow$$
 SM **overconstrains** *a*, *A*, *B* observables in n β decay! Fierz interf. term *b* adds sensitivity to non-SM processes!

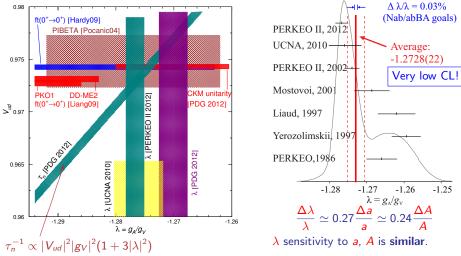
Goals of the Nab experiment (at SNS, ORNL)

▶ Measure the electron-neutrino parameter **a** in neutron decay

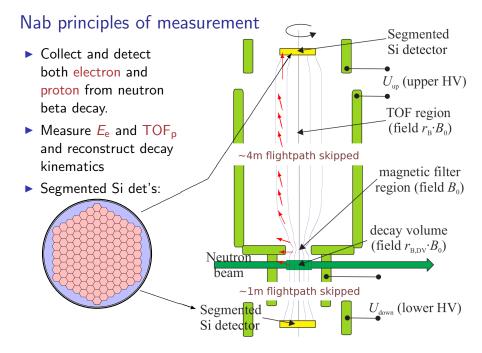
with accuracy of
$$\dfrac{\Delta a}{a} \simeq 10^{-3}$$
 or $\sim 50 \times$ better than:
$$-0.1054 \pm 0.0055$$
 Byrne et al '02

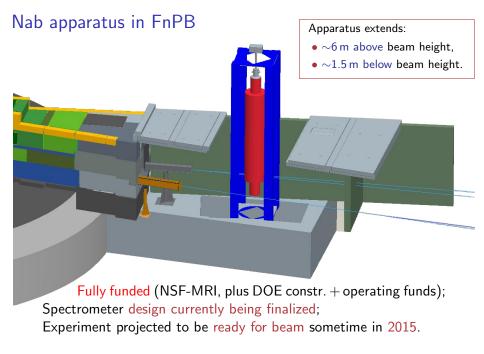
current results:
$$-0.1034 \pm 0.0033$$
 By the et al. 02
 -0.1017 ± 0.0051 Stratowa et al. '78
 -0.091 ± 0.039 Grigorev et al. '68

▶ Measure the Fierz interference term **b** in neutron decay


with accuracy of
$$\Delta b \simeq 3 \times 10^{-3}$$

current results: **none** (not yet measured in n decay)


▶ Nab will be followed by the abBA/PANDA polarized program to measure A, electron, and B/C, neutrino/proton, asymmetries with $\simeq 10^{-3}$ relative precision, an independent measurement of λ .


Current status of V_{ud} and λ , from n decay

... remains an unresolved mess:

- ▶ Nab+abBA \Rightarrow several independent $\sim 0.03\%$ determinations of λ ,
- ▶ Combined with $b \Rightarrow$ new limits on non-SM terms, esp. RH Tensor.

