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Basic facts

Goals of the Experiment

» Measure the electron-neutrino parameter a in neutron decay

i Aa _3
with accuracy of | — ~ 10
a
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Basic facts

Goals of the Experiment

» Measure the electron-neutrino parameter a in neutron decay

with accuracy of | — ~ 1073
a

—0.1054 £+ 0.0055 Byrne et al '02
current results: —0.1017 £ 0.0051 Stratowa et al '78
—0.091 + 0.039 Grigorev et al '68

» Measure the Fierz interference term b in neutron decay

with accuracy of Ab~ 3 x 103

current results: none
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Basic facts

Neutron Decay Parameters (SM)

dw

— ~ koE.(Ep — E.)?
dE.dQ.dQ, ~ © o(Eo — Ec)
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Basic facts

Neutron Decay Parameters (SM)

dw
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Basic facts

Neutron Decay Parameters (SM)

W kEl(Ey — E)?
dEedQedQ, ~ © o 0 °
Ke-k, m Ke Ky, ke X K,
x (1 b— 4+ (&a) - (A= +B2+D
toEE, TPE T ( E. ' E | EE, )]
with:
1A |AI> + Re())
a=——-— A=-2—— 7
1+ 3|22 1+ 3|\|2
A2 — Re(\ Im(\
B — oM e()) 5 _, MmN
1+ 3|2 14 3|22
Ga . . L
A= Go (with 7, = CKM V,4) (D # 0 < T inv. violation)
\"/
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Basic facts

n-decay Correlation Parameters Beyond V4

> Beta decay parameters constrain L-R symmetric, SUSY extensions to
the SM. [Reviews: Herczeg, Prog. Part. Nucl. Phys. 46, 413 (2001),
N. Severijns, M. Beck, O. Naviliat-Cun&i¢, Rev. Mod. Phys. 78, 991 (2006),
Ramsey-Musolf, Su, Phys. Rep. 456, 1 (2008)]

» Fierz interference term, never measured for the neutron, offers a
sensitive test of non-(V — A) terms in the weak Lagrangian (S, T).
[S. Profumo, M. J. Ramsey-Musolf, S. Tulin, PRD 75, 075017 (2007)]

» Measurement of the electron-energy dependence of a and A can
separately confirm CVC and absence of SCC.
[Gardner, Zhang, PRL 86, 5666 (2001), Gardner, hep-ph/0312124]

» A general connections exists between non-SM (e.g., S, T) terms in
d — uev and limits on v masses. [lto + Prézaeu, PRL 94 (2005)]
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Measurement principles Proton TOF and e-v correlation

Nab Measurement principles: Proton phase space

proton phase space
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Note: For a given E¢, cos 6, is a function of pg only.
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Measurement principles Proton TOF and e-v correlation

Measurement principles: Proton momentum response
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Measurement principles Spectrometer design
Measurement principles: Symmetric pectrometer

Neutron

Beam Segmented
Si detector
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Elements of spectrometer to be shared with other planned n decay

experiments, e.g., abBA.
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Measurement principles Spectrometer design

Measurement principles: Spectrometer field profiles
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Measurement principles Detection function

Measurement principles: Detection function (1)

Proton time of flight in B field:

f(cos # Boo - B
t, = f(cos0p0) where cos by o = Peo0 5
Pe Peo decay pt.
For an adiabatically expanding field prior to acceleration,
I
my d. my d.
f(cosbp0) :/ p 2 / P22
cos 0, ( 2 \/1 B(z) sin 0 o

To this we add effects of magnetic reflections and, later, of electric field
acceleration.
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Measurement principles Detection function

Measurement principles: Detection function (I1)

The proton momentum distribution within the phase space bounds is given
by
Pp(pg) =1+ afecosbe,, [recall: cosfe, = f(pg)]
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Measurement principles: Detection function (I1)

The proton momentum distribution within the phase space bounds is given
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Measurement principles: Detection function (I1)

The proton momentum distribution within the phase space bounds is given
by

Pp(pg) =1+ afecosbe,, [recall: cosfe, = f(pﬁ)]
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p p

Detection function ® relates the proton momentum and time-of-flight
distributions!
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Measurement principles: Detection function (I1)

The proton momentum distribution within the phase space bounds is given
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Measurement principles Detection function

Measurement principles: Detection function (I1)

The proton momentum distribution within the phase space bounds is given
by

Pp(pg) =1+ afecosbe,, [recall: cosfe, = f(pg)]

1 1
p p

Detection function ® relates the proton momentum and time-of-flight
distributions! To extract a reliably:

while

» & must be as narrow as possible,

» ® must be understood very precisely.

Two methods (“A" and “B") pursued to specify ®.
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Measurement principles

Detection function

Measurement principles: Detection function (II1)
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Measurement principles Detection function

Measurement principles: Detection function (V)
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Measurement principles Detection function

Measurement principles: Detection function (V)
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Measurement principles

Detection function

Optimized symmetric spectrometer
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Overview of uncertainties Event statistics, rates, running time

Statistical uncertainties for a and b
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Overview of uncertainties Event statistics, rates, running time

Statistical uncertainties for a and b

Statistical uncertainties for a

[ 0 100keV 100keV 300 keV
tp, max - 10 us 10 s

o 24/W 25/vVN 2.6/vVN 35/\7
oot 25/VN 26/VN -

T with E.a1 and | variable.
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Overview of uncertainties Event statistics, rates, running time

Statistical uncertainties for a and b

Statistical uncertainties for a

[ 0 100keV 100keV 300 keV
tp, max - 10 us 10 s

o 24/W 25/vVN 2.6/vVN 35/\7
oot 25/VN 26/VN -

T with E.a; and | variable.

Statistical uncertainties for b
Ee,min 0 100 keV 200 keV 300 keV

o, 75/VN 101/vVN 156/vVN 26.3/vVN
opft 7.7/V/N 103/VN 16.3/VN 27.7/v/N

T with E.q variable.
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Overview of uncertainties Event statistics, rates, running time

Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: r, ~ 19.5/(cm?s) .

This gives a rate of about | 350 evts./s|.

Nab fiducial volume is: V¢ ~ §2.42 x 2cm3 ~ 18cm3.
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Overview of uncertainties Event statistics, rates, running time

Event rates, statistics and running times

FnPB n decay rate w/nominal 1.4 MW SNS operation: r, ~ 19.5/(cm?s) .

Nab fiducial volume is: V¢ ~ §2.42 x 2cm3 ~ 18cm3.

This gives a rate of about | 350 evts./s|.

In a typical ~10-day run of 7 x 10°s of net beam time we would achieve

92 02%x10°3  and  op~6x10~*
a
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Overview of uncertainties Event statistics, rates, running time

Event rates, statistics and running times

We plan to collect several samples of 109 events in several 6-week runs.

Consequently, overall accuracy will not be statistics-limited.
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Overview of uncertainties  Systematic uncertainties

Systematic uncertainties and checks

» Uncertainties due to spectrometer response

o

Neutron beam profile: 100 um shift of beam center induces
Aa/a ~ 0.2%; cancels when averaging over detectors;
measurement of asymmetry pins it down sufficiently;

Magnetic field map:

field expansion ratio rg = Brog/Bo;

Aaja~ 1073 = Arg/rg = 1073, (use calibrated Hall probe);
field curvature «, (via proton asymmetry measurement);

field bumps AB/B must be kept below 2 x 1073 level;

Flight path length: A/ < 30 um = fitting parameter;
(3 consistency check);

Homogeneity of the electric field,;

Rest gas: requires vacuum of 107° torr or better;
Doppler effect;

Adiabaticity;
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Overview of uncertainties  Systematic uncertainties

Systematic uncertainties and checks (I1)

» Uncertainties due to the detector

o Detector alignment;

o Electron energy calibration: requirement 10~%; we'll use radioactive
sources, other strategies, also as fitting parameter,

o Trigger hermiticity: affected by impact angle, backscattering, TOF
cutoff (to reduce accid. bgd.);

o TOF uncertainties;

o Edge effects;

» Backgrounds

o Neutron beam related background,
o Particle trapping;

» Uncertainties in b: fewer than for a (no proton detection); dominant
are energy calibration and electron backgrounds.
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Asymmetric design Spectrometer basics

Asymmetric spectrometer
Four serious challenges can be relieved in an asymmetric spectrometer:

» Achieving a long flight path for protons and, hence, high t, (TOF)
resolution,
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Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:
» Achieving a long flight path for protons and, hence, high t, (TOF)
resolution,

» Achieving a high degree of proton momentum linearization, and,
hence, accuracy of the p,—t, relationship (narrow detection function),

> Greatly reducing the sensitivity to particle trapping in small field
imperfections in the neutron decay region, and

> Reducing the influence of small nonuniformities in electric potential
from ~ 1V level to a more controllable ~mV level.
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Asymmetric design Spectrometer basics

Asymmetric spectrometer

Four serious challenges can be relieved in an asymmetric spectrometer:
» Achieving a long flight path for protons and, hence, high t, (TOF)
resolution,

» Achieving a high degree of proton momentum linearization, and,
hence, accuracy of the p,—t, relationship (narrow detection function),

> Greatly reducing the sensitivity to particle trapping in small field
imperfections in the neutron decay region, and

> Reducing the influence of small nonuniformities in electric potential
from ~ 1V level to a more controllable ~mV level.
Key strategy:
» Move the high-field pinch away from the neutron decay region,

» Have one main, long TOF spectrometer side.
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Asymmetric design Spectrometer basics

Basic design and features of asymmetric Nab

Segmented Features:
:| Si detector » long TOF above n beam,
0-31kV

» displaced magnetic cos @ filter,

TOF region > no count rate penalty viz.
L (field ryBy) symmetric Nab.

magnetic filter

region (field B,) N B ,
[ detector (2)=B,(1-(az))
4L
o decay volume
. B(z) ~ ry B llnear field decay
d (ﬁeld rB’DV BO) 3 (small gradlem detector
Nleutr 30kV ~10 /Cm) filter region

>

S}
T
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Magnetic field B [T]

expansion region
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X

H—‘ 0-30 kV

Stefan BaeBler, March 2009 _Z}-{Ze‘;hzfz[m]

=) _
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decay volume
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Asymmetric design Spectrometer basics

Asymmetric Nab: expected performance

Simulated detection function and 1/t, distribution:
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(using rg = 0.05 and rg py = 0.5)
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Summary

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay
parameters a and b with |Aa/a ~ 1073 and Ab ~ 3 x 103
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Summary

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay

parameters a and b with |Aa/a ~ 1073 and Ab ~ 3 x 103

>

Basic properties of the symmetric Nab spectrometer are well
understood and highly optimized.

The new asymmetric Nab idea looks very promising; details are under
extensive analytical and Monte Carlo study.

Elements of spectrometer may be shared with other neutron decay
experiments, e.g., abBA.

Development of abBA /Nab Si detectors is ongoing and remains a
technological challenge.

Experiment received approval in Feb. 2008; could be ready for
commissioning sometime in 2011.
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Summary

SUMMARY

Nab plans a simultaneous high-statistics measurement of neutron decay
parameters a and b with |Aa/a ~ 1073 and Ab ~ 3 x 103

» Basic properties of the symmetric Nab spectrometer are well
understood and highly optimized.

» The new asymmetric Nab idea looks very promising; details are under

extensive analytical and Monte Carlo study.

» Elements of spectrometer may be shared with other neutron decay
experiments, e.g., abBA.

» Development of abBA/Nab Si detectors is ongoing and remains a
technological challenge.

» Experiment received approval in Feb. 2008; could be ready for
commissioning sometime in 2011.

» Crude budget estimate ~ $2.5 M.
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Summary Comparison w/other experiments

Current experiments aiming to measure a

1. Nab: goal is to measure Aa/a ~ 1073
» Best statistical sensitivity,
» Challenging but manageable systematics, esp. in asymm. design.
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1. Nab: goal is to measure Aa/a ~ 1073
» Best statistical sensitivity,
» Challenging but manageable systematics, esp. in asymm. design.

2. abBA: goal is to measure Aa/a ~ 1073
» Similar to Nab, but with a spectrometer optimized for A,B,
» Detection function is very broad, syst. uncert. for a very demanding.

3. aCORN: goal is to measure Aa/a ~ 0.5 —2%
» Funded, under construction,
> Uses only part of neutron decays.

4. aSPECT: aims to measure Aa/a ~ 1073
» Funded and running; recently overcame trapping problems,
» Stat. sensitivity not as good as Nab due to integration; presently
~ 2 %/day—will likely improve on publ. results, not < 1% this run,
» Easier determination of detection function than in Nab at the present
level of accuracy.
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Summary Comparison w/other experiments

The Nab collaboration

R. Alarcon!, L.P. Alonzi?, S. BaeBler?*, S. Balascutal, J.D. Bowman3T,
M.A. Bychkov?, J. Byrne*, J.R. Calarco®, V. Cianciolo®, C. Crawford®,
E. Frle??, M.T. Gericke’, F. Gliick®, G.L. Greene®, R.K. Grzywacz®,
V. Gudkovi?, F.W. Hersman®, A. Klein!!, J. Martin!?, S.A. Page®,
A. Palladino?, S.I. Penttila3, D. Potani¢?t, K.P. Rykaczewski?,
W.S. Wilburn!!, A.R. Young'3, G.R. Young3.

! Arizona State University 2University of Virginia

30ak Ridge National Lab 4University of Sussex

>Univ. of New Hampshire University of Kentucky
"University of Manitoba 8Uni. Karlsruhe/RMKI Budapest
9University of Tennessee OUniversity of South Carolina

1 os Alamos National Lab 12University of Winnipeg
BNorth Carlolina State Univ.
*Experiment Manager TCo-spokesmen

Home page: http://nab.phys.virginia.edu/
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