

Programmer’s Reference Manual ZM020100G Rev A

XZ100

ACQIRIS
PROGRAMMER’S

REFERENCE
MANUAL

Programmer’s Reference Manual Page 2 of 159

January 2006

The information in this document is subject to change without notice and may not be construed as in any
way as a commitment by Acqiris. While Acqiris makes every effort to ensure the accuracy and contents
of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and
copied in accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought
to be functional but it is supplied “as is” with no warranty for specified performance. No responsibility is
assumed for the use or the reliability of software, firmware or any equipment that is not supplied by
Acqiris SA or its affiliated companies.

Any versions of this manual which are supplied with a purchased product will be replaced at your request
with the latest revision in electronic format. At Acqiris we appreciate and encourage customer input. If
you have a suggestion related to the content of this manual or the presentation of information, please
contact your local Acqiris representative or Acqiris Technical Support (support@acqiris.com) or come
visit our web site at http://www.acqiris.com.

Trademarks: product and company names listed are trademarks or trade names of their respective
companies

Acqiris Headquarters:

Acqiris SA
18, chemin des Aulx
CH-1228 Plan-les-Ouates
Geneva
Switzerland

Acqiris USA:

Acqiris LLC
234 Cromwell Hill Rd.
P.O. Box 2203
Monroe, NY 10950-1430
USA

Acqiris Asia-Pacific:

Acqiris Pty Ltd
Suite 7, Level 1
407 Canterbury Road,
P.O. Box 13
Surrey Hills 3127
Australia

Tel: +41 22 884 33 90

Fax: +41 22 884 33 99

Tel: 845 782 6544

Fax: 845 782 4745

Tel: +61 3 9888 4586

Fax: +61 3 9849 0861

© Copyright January 2006, Acqiris SA. All rights reserved.

mailto:support@acqiris.com
http://www.acqiris.com/

Programmer’s Reference Manual Page 3 of 159

CONTENTS
1. INTRODUCTION ..5

1.1. Message to the User..5
1.2. Using this Manual...5
1.3. Conventions Used in This Manual ...6
1.4. Warning Regarding Medical Use ...6
1.5. Warranty...6
1.6. Warranty and Repair Return Procedure, Assistance and Support...6
1.7. System Requirements ...6

2. DEVICE DRIVER FUNCTION REFERENCE ..7
2.1. Status values and Error codes ...7
2.2. API Function classification...9
2.3. API Function descriptions ..12
2.3.1 AcqrsD1_accumulateData ..12
2.3.2 AcqrsD1_accumulateWform (DEPRECATED)...14
2.3.3 AcqrsD1_acqDone..16
2.3.4 AcqrsD1_acquire ..17
2.3.5 AcqrsD1_acquireEx..18
2.3.6 AcqrsD1_averagedData..19
2.3.7 AcqrsD1_averagedWform (DEPRECATED) ..22
2.3.8 AcqrsD1_bestNominalSamples ..24
2.3.9 AcqrsD1_bestSampInterval..26
2.3.10 AcqrsD1_calibrate ..28
2.3.11 AcqrsD1_calibrateEx..29
2.3.12 AcqrsD1_close..31
2.3.13 AcqrsD1_closeAll ..32
2.3.14 AcqrsD1_configAvgConfig..33
2.3.15 AcqrsD1_configChannelCombination..38
2.3.16 AcqrsD1_configControlIO ...40
2.3.17 AcqrsD1_configExtClock...43
2.3.18 AcqrsD1_configFCounter...45
2.3.19 AcqrsD1_configHorizontal...47
2.3.20 AcqrsD1_configLogicDevice ...49
2.3.21 AcqrsD1_configMemory..51
2.3.22 AcqrsD1_configMemoryEx ...52
2.3.23 AcqrsD1_configMode ..54
2.3.24 AcqrsD1_configMultiInput ..56
2.3.25 AcqrsD1_configSetupArray ...58
2.3.26 AcqrsD1_configTrigClass ..60
2.3.27 AcqrsD1_configTrigSource..62
2.3.28 AcqrsD1_configTrigTV ...64
2.3.29 AcqrsD1_configVertical...66
2.3.30 AcqrsD1_errorMessage ..68
2.3.31 AcqrsD1_errorMessageEx..69
2.3.32 AcqrsD1_forceTrig...71
2.3.33 AcqrsD1_forceTrigEx ..72
2.3.34 AcqrsD1_getAvgConfig ...74
2.3.35 AcqrsD1_getChannelCombination...76
2.3.36 AcqrsD1_getControlIO ..78
2.3.37 AcqrsD1_getExtClock..80
2.3.38 AcqrsD1_getFCounter..82
2.3.39 AcqrsD1_getHorizontal..84
2.3.40 AcqrsD1_getInstrumentData ..86
2.3.41 AcqrsD1_getInstrumentInfo ...88

Programmer’s Reference Manual Page 4 of 159

2.3.42 AcqrsD1_getMemory ...92
2.3.43 AcqrsD1_getMemoryEx...94
2.3.44 AcqrsD1_getMode..96
2.3.45 AcqrsD1_getMultiInput..98
2.3.46 AcqrsD1_getNbrChannels..100
2.3.47 AcqrsD1_getNbrPhysicalInstruments ..101
2.3.48 AcqrsD1_getSetupArray...102
2.3.49 AcqrsD1_getTrigClass ...104
2.3.50 AcqrsD1_getTrigSource ...106
2.3.51 AcqrsD1_getTrigTV...108
2.3.52 AcqrsD1_getVersion ..110
2.3.53 AcqrsD1_getVertical ..112
2.3.54 AcqrsD1_init ..114
2.3.55 AcqrsD1_InitWithOptions..116
2.3.56 AcqrsD1_logicDeviceIO ..118
2.3.57 AcqrsD1_multiInstrAutoDefine ...120
2.3.58 AcqrsD1_multiInstrDefine ...122
2.3.59 AcqrsD1_multiInstrUndefineAll ..124
2.3.60 AcqrsD1_procDone ..125
2.3.61 AcqrsD1_processData ..126
2.3.62 AcqrsD1_readCharSequence (DEPRECATED) ..128
2.3.63 AcqrsD1_readCharWform (DEPRECATED) ..131
2.3.64 AcqrsD1_readData ...133
2.3.65 AcqrsD1_readFCounter..140
2.3.66 AcqrsD1_readRealSequence (DEPRECATED)...141
2.3.67 AcqrsD1_readRealWform (DEPRECATED)...143
2.3.68 AcqrsD1_reportNbrAcquiredSegments..145
2.3.69 AcqrsD1_reset ..147
2.3.70 AcqrsD1_resetDigitizerMemory ..148
2.3.71 AcqrsD1_restoreInternalRegisters..149
2.3.72 AcqrsD1_setAttributeString ...151
2.3.73 AcqrsD1_setLEDColor ..152
2.3.74 AcqrsD1_setSimulationOptions ...153
2.3.75 AcqrsD1_stopAcquisition...154
2.3.76 AcqrsD1_stopProcessing..155
2.3.77 AcqrsD1_waitForEndOfAcquisition ..156
2.3.78 AcqrsD1_waitForEndOfProcessing..158

Programmer’s Reference Manual Page 5 of 159

1. Introduction

1.1. Message to the User
Congratulations on having purchased an Acqiris data conversion product. Acqiris Digitizers, Averagers,
and Analyzers are high-speed data acquisition modules designed for capturing high frequency electronic
signals. To get the most out of the products we recommend that you read the accompanying product User
Manual, the Programmer's Guide and this Programmer’s Reference Manual carefully. We trust that the
product you have purchased as well as the accompanying software will meet with your expectations and
provide you with a high quality solution to your data conversion applications.

1.2. Using this Manual
This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows
95/98/2000/NT4/XP or other supported operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to control your Acqiris product. It
also assumes you have a basic understanding of the principles of data acquisition using either a waveform
digitizer or a digital oscilloscope.

The User Manual that you also have received (or have access to) has important and detailed instructions
concerning your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris
product. Special attention should be paid to sections on safety, packaging and product
handling. Before installing your product please ensure that your system configuration
matches or exceeds the requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performance verification.
Before attempting to use your Acqiris product for actual measurements we strongly
recommend that you read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements
of your product.

Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either
 the operation of AcqirisLive 2.15, an application that enables basic operation
of Acqiris digitizers or averagers in a Windows 95/98/2000/NT4/XP environment;
 the operation of AP_SSRDemo and in the following chapter APx01Demo,
applications that enable basic operation of Acqiris analyzers in a Windows
95/98/2000/NT4/XP environment;

Chapter 5 RUNNING THE GEOMAPPER APPLICATION, describes the purpose and operation
of the GeoMapper application which is needed for some ASBus2 Multi-instrument
systems.

The Programmer’s Guide is divided into 4 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a
description for programming applications using a variety of software products and
development environments.

Chapter 3 PROGRAMMING AN ACQIRIS DIGITIZER, provides information on using the
device driver functions to operate an Acqiris digitizer.

Chapter 4 ATTRIBUTES, contains reference information about attributes. The attribute interface
to the driver can be used with the MATLAB interface and the SP201 Software
Development Kit.

This Programmer’s Reference manual is divided into 2 sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Programmer’s Reference Manual Page 6 of 159

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function
reference. This documents the traditional Application Program Interface (API) as it can
be used in the following environments:

LabWindowsCVI, Visual C++, LabVIEW, Visual Basic, Visual Basic .NET.

1.3. Conventions Used in This Manual
The following conventions are used in this manual:

This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take to avoid being electrically
shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical,
mechanical, or operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples and operating system
commands.

Certain features are common to several different modules. For increased readability we have defined the
following families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
 DC271/DC271A/DC271AR/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306

10-bit-FAMILY DC122/DC152/DC222/DC252/DC282

1.4. Warning Regarding Medical Use
The Digitizer cards are not designed with components and testing procedures that would ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by
errors on the part of the user. These cards are not intended to be a substitute for any form of established
process or equipment used to monitor or safeguard human health and safety in medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct
measurements on the human body. Users who connect an Acqiris module to a human
body do so at their own risk.

1.5. Warranty
Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance and Support
Please refer to the appropriate User Manual.

1.7. System Requirements
Please refer to the appropriate User Manual.

Programmer’s Reference Manual Page 7 of 159

2. Device Driver Function Reference
All function calls require the argument instrumentID in order to identify the Acqiris Digitizer card to
which the call is directed. The only exceptions are the initialization/termination functions:

• AcqrsD1_close • AcqrsD1_init • AcqrsD1_InitWithOptions

• AcqrsD1_getNbrPhysicalInstruments • AcqrsD1_multiInstrAutoDefine

• AcqrsD1_setSimulationOptions • AcqrsD1_multiInstrUndefineAll

The functions AcqrsD1_init, AcqrsD1_InitWithOptions and AcqrsD1_multiInstrDefine actually
return instrument identifiers at initialization time, for subsequent use in the other function calls.

2.1. Status values and Error codes
All function calls return a status value of type 'ViStatus' with information about the success or failure of
the call. All Acqiris specific values can be found in the header file AcqirisErrorCodes.h and are shown
in Table 2-1. The generic ones, defined by the VXIplug&play Systems Alliance, are listed in the header
file vpptype.h (VXIplug&play instrument driver header file, which includes visatype.h: fundamental
VISA data types and macro definitions). They are reproduced in Table 2-2 for convenience. The header
file AcqirisD1Interface.h shows the common error codes associated with each function.

Acqiris Error Codes Hex value Decimal value
ACQIRIS_ERROR_FILE_NOT_FOUND BFFA4800 -1074116608
ACQIRIS_ERROR_PATH_NOT_FOUND BFFA4801 -1074116607
ACQIRIS_ERROR_INVALID_HANDLE BFFA4803 -1074116605
ACQIRIS_ERROR_NOT_SUPPORTED BFFA4805 -1074116603
ACQIRIS_ERROR_INVALID_WINDOWS_PARAM BFFA4806 -1074116602
ACQIRIS_ERROR_NO_DATA BFFA4807 -1074116601
ACQIRIS_ERROR_NO_ACCESS BFFA4808 -1074116600
ACQIRIS_ERROR_BUFFER_OVERFLOW BFFA4809 -1074116599
ACQIRIS_ERROR_BUFFER_NOT_64BITS_ALIGNED BFFA480A -1074116598
ACQIRIS_ERROR_ALREADY_OPEN BFFA4840 -1074116544
ACQIRIS_ERROR_SETUP_NOT_AVAILABLE BFFA4880 -1074116480
ACQIRIS_ERROR_IO_WRITE BFFA48A0 -1074116448
ACQIRIS_ERROR_IO_READ BFFA48A1 -1074116447
ACQIRIS_ERROR_INTERNAL_DEVICENO_INVALID BFFA48C0 -1074116416
ACQIRIS_ERROR_TOO_MANY_DEVICES BFFA48C1 -1074116415
ACQIRIS_ERROR_EEPROM_DATA_INVALID BFFA48C2 -1074116414
ACQIRIS_ERROR_INIT_STRING_INVALID BFFA48C3 -1074116413
ACQIRIS_ERROR_INSTRUMENT_NOT_FOUND BFFA48C4 -1074116412
ACQIRIS_ERROR_INSTRUMENT_RUNNING BFFA48C5 -1074116411
ACQIRIS_ERROR_INSTRUMENT_STOPPED BFFA48C6 -1074116410
ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS BFFA48C7 -1074116409
ACQIRIS_ERROR_NOT_ENOUGH_DEVICES BFFA48C8 -1074116408
ACQIRIS_ERROR_NO_MASTER_DEVICE BFFA48C9 -1074116407
ACQIRIS_ERROR_PARAM_STRING_INVALID BFFA48CA -1074116406
ACQIRIS_ERROR_COULD_NOT_CALIBRATE BFFA48CB -1074116405
ACQIRIS_ERROR_CANNOT_READ_THIS_CHANNEL BFFA48CC -1074116404
ACQIRIS_ERROR_PRETRIGGER_STILL_RUNNING BFFA48CD -1074116403
ACQIRIS_ERROR_CALIBRATION_FAILED BFFA48CE -1074116402
ACQIRIS_ERROR_MODULES_NOT_CONTIGUOUS BFFA48CF -1074116401
ACQIRIS_ERROR_INSTRUMENT_ACQ_LOCKED BFFA48D0 -1074116400
ACQIRIS_ERROR_INSTRUMENT_ACQ_NOT_LOCKED BFFA48D1 -1074116399
ACQIRIS_ERROR_EEPROM2_DATA_INVALID BFFA48D2 -1074116398
ACQIRIS_ERROR_INVALID_GEOMAP_FILE BFFA48E0 -1074116384
ACQIRIS_ERROR_ACQ_TIMEOUT BFFA4900 -1074116352
ACQIRIS_ERROR_OVERLOAD BFFA4901 -1074116351
ACQIRIS_ERROR_PROC_TIMEOUT BFFA4902 -1074116350
ACQIRIS_ERROR_LOAD_TIMEOUT BFFA4903 -1074116349
ACQIRIS_ERROR_READ_TIMEOUT BFFA4904 -1074116348
ACQIRIS_ERROR_INTERRUPTED BFFA4905 -1074116347
ACQIRIS_ERROR_WAIT_TIMEOUT BFFA4906 -1074116346
ACQIRIS_ERROR_FIRMWARE_NOT_AUTHORIZED BFFA4A00 -1074116096
ACQIRIS_ERROR_FPGA_1_LOAD BFFA4A01 -1074116095
ACQIRIS_ERROR_FPGA_2_LOAD BFFA4A02 -1074116094

Programmer’s Reference Manual Page 8 of 159

Acqiris Error Codes Hex value Decimal value
ACQIRIS_ERROR_FPGA_3_LOAD BFFA4A03 -1074116093
ACQIRIS_ERROR_FPGA_4_LOAD BFFA4A04 -1074116092
ACQIRIS_ERROR_FPGA_5_LOAD BFFA4A05 -1074116091
ACQIRIS_ERROR_FPGA_6_LOAD BFFA4A06 -1074116090
ACQIRIS_ERROR_FPGA_7_LOAD BFFA4A07 -1074116089
ACQIRIS_ERROR_FPGA_8_LOAD BFFA4A08 -1074116088
ACQIRIS_ERROR_SELFCHECK_MEMORY BFFA4A20 -1074116064
ACQIRIS_ERROR_ATTR_NOT_FOUND BFFA4B00 -1074115840
ACQIRIS_ERROR_ATTR_WRONG_TYPE BFFA4B01 -1074115839
ACQIRIS_ERROR_ATTR_IS_READ_ONLY BFFA4B02 -1074115838
ACQIRIS_ERROR_ATTR_IS_WRITE_ONLY BFFA4B03 -1074115837
ACQIRIS_ERROR_ATTR_ALREADY_DEFINED BFFA4B04 -1074115836
ACQIRIS_ERROR_ATTR_IS_LOCKED BFFA4B05 -1074115835
ACQIRIS_ERROR_ATTR_INVALID_VALUE BFFA4B06 -1074115834
ACQIRIS_ERROR_KERNEL_VERSION BFFA4C00 -1074115584
ACQIRIS_ERROR_UNKNOWN_ERROR BFFA4C01 -1074115583
ACQIRIS_ERROR_OTHER_WINDOWS_ERROR BFFA4C02 -1074115582
ACQIRIS_ERROR_VISA_DLL_NOT_FOUND BFFA4C03 -1074115581
ACQIRIS_ERROR_OUT_OF_MEMORY BFFA4C04 -1074115580
ACQIRIS_ERROR_UNSUPPORTED_DEVICE BFFA4C05 -1074115579
ACQIRIS_ERROR_PARAMETER9 BFFA4D09 -1074115319
ACQIRIS_ERROR_PARAMETER10 BFFA4D0A -1074115318
ACQIRIS_ERROR_PARAMETER11 BFFA4D0B -1074115317
ACQIRIS_ERROR_PARAMETER12 BFFA4D0C -1074115316
ACQIRIS_ERROR_PARAMETER13 BFFA4D0D -1074115315
ACQIRIS_ERROR_PARAMETER14 BFFA4D0E -1074115314
ACQIRIS_ERROR_PARAMETER15 BFFA4D0F -1074115313
ACQIRIS_ERROR_NBR_SEG BFFA4D10 -1074115312
ACQIRIS_ERROR_NBR_SAMPLE BFFA4D11 -1074115311
ACQIRIS_ERROR_DATA_ARRAY BFFA4D12 -1074115310
ACQIRIS_ERROR_SEG_DESC_ARRAY BFFA4D13 -1074115309
ACQIRIS_ERROR_FIRST_SEG BFFA4D14 -1074115308
ACQIRIS_ERROR_SEG_OFF BFFA4D15 -1074115307
ACQIRIS_ERROR_FIRST_SAMPLE BFFA4D16 -1074115306
ACQIRIS_ERROR_DATATYPE BFFA4D17 -1074115305
ACQIRIS_ERROR_READMODE BFFA4D18 -1074115304
ACQIRIS_ERROR_HW_FAILURE BFFA4D80 -1074115200
ACQIRIS_ERROR_HW_FAILURE_CH1 BFFA4D81 -1074115199
ACQIRIS_ERROR_HW_FAILURE_CH2 BFFA4D82 -1074115198
ACQIRIS_ERROR_HW_FAILURE_CH3 BFFA4D83 -1074115197
ACQIRIS_ERROR_HW_FAILURE_CH4 BFFA4D84 -1074115196
ACQIRIS_ERROR_HW_FAILURE_CH5 BFFA4D85 -1074115195
ACQIRIS_ERROR_HW_FAILURE_CH6 BFFA4D86 -1074115194
ACQIRIS_ERROR_HW_FAILURE_CH7 BFFA4D87 -1074115193
ACQIRIS_ERROR_HW_FAILURE_CH8 BFFA4D88 -1074115192
ACQIRIS_ERROR_HW_FAILURE_EXT1 BFFA4DA0 -1074115168
ACQIRIS_WARN_SETUP_ADAPTED 3FFA4E00 1073368576
ACQIRIS_WARN_READPARA_NBRSEG_ADAPTED 3FFA4E10 1073368592
ACQIRIS_WARN_READPARA_NBRSAMP_ADAPTED 3FFA4E11 1073368593
ACQIRIS_WARN_EEPROM_AND_DLL_MISMATCH 3FFA4E12 1073368594
ACQIRIS_WARN_ACTUAL_DATASIZE_ADAPTED 3FFA4E13 1073368595
ACQIRIS_WARN_UNEXPECTED_TRIGGER 3FFA4E14 1073368596
ACQIRIS_WARN_READPARA_FLAGS_ADAPTED 3FFA4E15 1073368597

Table 2-1 Acqiris Error Codes

Error code Hex value Decimal value
VI_SUCCESS 0 0
VI_ERROR_PARAMETER1 BFFC0001 -1074003967
VI_ERROR_PARAMETER2 BFFC0002 -1074003966
VI_ERROR_PARAMETER3 BFFC0003 -1074003965
VI_ERROR_PARAMETER4 BFFC0004 -1074003964
VI_ERROR_PARAMETER5 BFFC0005 -1074003963
VI_ERROR_PARAMETER6 BFFC0006 -1074003962
VI_ERROR_PARAMETER7 BFFC0007 -1074003961

Programmer’s Reference Manual Page 9 of 159

VI_ERROR_PARAMETER8 BFFC0008 -1074003960
VI_ERROR_FAIL_ID_QUERY BFFC0011 -1074003951
VI_ERROR_INV_RESPONSE BFFC0012 -1074003950

Table 2-2 VXIplug&play Error Codes

If important parameters supplied by the user (e.g. an instrumentID) are found to be invalid, most
functions do not execute and return an error code of the type VI_ERROR_PARAMETERi, where i = 1,
2,... corresponds to the argument number.

If the user attempts (with a function AcqrsD1_configXXXX) to set a digitizer parameter to a value
outside of its acceptable range, the function typically adapts the parameter to the closest allowed value
and returns ACQIRIS_WARN_SETUP_ADAPTED. The digitizer parameters that are actually in use
can be retrieved with the query functions AcqrsD1_getXXXX.

Data are always returned through pointers to user-allocated variables or arrays.

Some parameters are labeled "Currently ignored". It is recommended to supply the value "0" (ViInt32)
or "0.0" (ViReal64) in order to be compatible with future products that may offer additional
functionality.

2.2. API Function classification
Initialization Functions Function Name

Number of Physical Instruments AcqrsD1_getNbrPhysicalInstruments

MultiInstrument Auto Define AcqrsD1_multiInstrAutoDefine

Initialization AcqrsD1_init

Initialization with Options AcqrsD1_InitWithOptions

Simulation Options AcqrsD1_setSimulationOptions

Calibration Functions

Calibrate Instrument AcqrsD1_calibrate

Calibrate for External Clock AcqrsD1_calibrateEx

Configuration Functions

Configure Vertical Settings AcqrsD1_configVertical

Configure Horizontal Settings AcqrsD1_configHorizontal

Configure Channel Combination AcqrsD1_configChannelCombination

Configure Trigger Class AcqrsD1_configTrigClass

Configure Trigger Source AcqrsD1_configTrigSource

Configure Trigger TV AcqrsD1_configTrigTV

Configure Memory Settings AcqrsD1_configMemory

Configure Memory Settings (extended) AcqrsD1_configMemoryEx

Configure External Clock AcqrsD1_configExtClock

Configure Digitizer Mode AcqrsD1_configMode

Configure Multiplexer Input AcqrsD1_configMultiInput

Configure Control IO AcqrsD1_configControlIO

Configure Frequency Counter AcqrsD1_configFCounter

Configure Averager Configuration Attribute AcqrsD1_configAvgConfig

Configure (program) on-board FPGA AcqrsD1_configLogicDevice

Configure Array of Setup Parameters AcqrsD1_configSetupArray

Logical Device IO AcqrsD1_logicDeviceIO

Programmer’s Reference Manual Page 10 of 159

MultiInstrument Manual Define AcqrsD1_multiInstrDefine

MultiInstrument Undefine AcqrsD1_multiInstrUndefineAll

Setup Streaming in SC Analyzer AcqrsD1_setAttributeString

Acquisition Control Functions

Start Acquisition AcqrsD1_acquire

Start Acquisition (Extended) AcqrsD1_acquireEx

Query Acquisition Status AcqrsD1_acqDone

Software Trigger AcqrsD1_forceTrig

Software Trigger (Extended) AcqrsD1_forceTrigEx

Stop Acquisition AcqrsD1_stopAcquisition

Wait for End of Acquisition AcqrsD1_waitForEndOfAcquisition

Number of Acquired Segments AcqrsD1_reportNbrAcquiredSegments

Data Transfer Functions

Universal Waveform Read AcqrsD1_readData

Accumulate Data AcqrsD1_accumulateData

Averaged Data AcqrsD1_averagedData

Read Frequency Counter AcqrsD1_readFCounter

DEPRECATED DO NOT USE FOR NEW PROGRAMS

Read Sequence (ADC counts) AcqrsD1_readCharSequence

Read Sequence (Volts) AcqrsD1_readRealSequence

Read Waveform (ADC counts) AcqrsD1_readCharWform

Read Waveform (Volts) AcqrsD1_readRealWform

Accumulate Waveform AcqrsD1_accumulateWform

Averaged Waveform AcqrsD1_averagedWform

Query Functions

Query External Clock AcqrsD1_getExtClock

Query Horizontal Settings AcqrsD1_getHorizontal

Query Channel Combination AcqrsD1_getChannelCombination

Query Memory Settings AcqrsD1_getMemory

Query Memory Settings (extended) AcqrsD1_getMemoryEx

Query Multiplexer Input AcqrsD1_getMultiInput

Query Trigger Class AcqrsD1_getTrigClass

Query Trigger Source AcqrsD1_getTrigSource

Query Trigger TV AcqrsD1_getTrigTV

Query Vertical Settings AcqrsD1_getVertical

Query Digitizer Mode AcqrsD1_getMode

Query Control IO AcqrsD1_getControlIO

Query Frequency Counter AcqrsD1_getFCounter

Query Averager Configuration AcqrsD1_getAvgConfig

Instrument Basic Data AcqrsD1_getInstrumentData

Instrument Information AcqrsD1_getInstrumentInfo

Programmer’s Reference Manual Page 11 of 159

Number of Channels AcqrsD1_getNbrChannels

Query Array of Setup Parameters AcqrsD1_getSetupArray

Control Functions

Query (on-board) Processing Status AcqrsD1_procDone

Start (on-board) Processing AcqrsD1_processData

Stop (on-board) Processing AcqrsD1_stopProcessing

Wait for End of (on-board) Processing AcqrsD1_waitForEndOfProcessing

Utility Functions

Best Nominal Samples AcqrsD1_bestNominalSamples

Best Sampling Interval AcqrsD1_bestSampInterval

Version AcqrsD1_getVersion

Error Message AcqrsD1_errorMessage

Extended Error Message AcqrsD1_errorMessageEx

Reset AcqrsD1_reset

Reset Digitizer Memory AcqrsD1_resetDigitizerMemory

Restore Internal Registers AcqrsD1_restoreInternalRegisters

Set LED Color AcqrsD1_setLEDColor

Close all instruments AcqrsD1_closeAll

Programmer’s Reference Manual Page 12 of 159

2.3. API Function descriptions
This section describes each function in the Device Driver. The functions appear in alphabetical order.

2.3.1 AcqrsD1_accumulateData

Purpose

Returns a waveform as an array and accumulates it in a client array.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired waveform.

Output
Name Type Description

dataArray ViAddr User-allocated waveform destination array of type char
or byte. Its size in dataType units MUST be at least
'nbrSamples' + 32, for reasons of data alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.

dataDesc AqDataDescriptor Waveform descriptor structure.
segDescArray ViAddr Segment descriptor structure.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1'
and 'readPar->readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real)
and 'readPar->dataType = 2' (long) are NOT supported.

The sumArray contains the sample-by-sample sums. To get the average values, the array
elements must be divided by the number of accumulations performed. The sumArray can be
interpreted as an unsigned integer. Alternatively, negative values have to be increased by 2**32.

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char)
or 65536 for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed
values will wrap around 0.

The value in Volts of a data point data in the returned dataArray can be computed with the
formula:

V = dataDesc.vGain * data – dataDesc.vOffset

Programmer’s Reference Manual Page 13 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_accumulateData (ViSession instrumentID,

ViInt32 channel, AqReadParameters* readPar,
void* dataArray, ViInt32 sumArray[],
AqDataDescriptor* dataDesc,

 void* segDescArray);

LabVIEW Representation

AqDx Accumulate Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8 or I16.

Visual Basic Representation

AccumulateData (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 readPar As AqReadParameters, _
 dataArray As Any, _
 sumArray As Long, _
 dataDesc As AqDataDescriptor, _
 segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_accumulateData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByRef dataArray As Byte, _
 ByRef sumArray As Int32, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptor) _
 As Int32

MATLAB MEX Representation

[status readPar dataDesc segDescArray dataArray sumArray]=

Aq_accumulateData(instrumentID, channel)

Programmer’s Reference Manual Page 14 of 159

2.3.2 AcqrsD1_accumulateWform (DEPRECATED)

Purpose

Returns a waveform as a byte (8-bit integer) array and accumulates it in a client array. This
routine is for use with 8-bit Digitizers.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
segmentNumber ViInt32 Requested segment number, may assume 0 to the

(number of segments – 1) set with the function
AcqrsD1_configMemory.

firstSample ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1) set with
the function AcqrsD1_configMemory.

nbrSamples ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

Output
Name Type Description

waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least 'nbrSamples' + 32,
for reasons of data alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.

returnedSamples ViInt32 Number of data samples actually returned
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The sumArray contains the sample-by-sample sums. To get the average values, the array
elements must be divided by the number of accumulations performed.

The value in Volts of a data point data in the returned waveformArray can be computed with
the formula:

V = vGain * data - vOffset

Programmer’s Reference Manual Page 15 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_accumulateWform (ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViChar waveformArray[], ViInt32 sumArray[],
ViInt32 *returnedSamples, ViReal64 *sampTime,
ViReal64 *vGain, ViReal64 *vOffset);

LabVIEW Representation

AqDx Read Accumulated Waveform.vi should be considered as obsolete.
Please use AqDx Accumulate Data.vi instead.

Visual Basic Representation

AccumulateWform (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal segmentNumber As Long, _
 ByVal firstSample As Long, _
 ByVal nbrSamples As Long, _
 waveformArray As Byte, _
 sumArray As Long, _
 returnedSamples As Long, _
 sampTime As Double, _
 vGain As Double, _
 vOffset As Double) As Long

Programmer’s Reference Manual Page 16 of 159

2.3.3 AcqrsD1_acqDone

Purpose

Checks if the acquisition has terminated.

Parameters

Input
Name Type Description

InstrumentID ViSession Instrument identifier

Output
Name Type Description

Done ViBoolean done = VI_TRUE if the acquisition is terminated
 VI_FALSE otherwise

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acqDone(ViSession instrumentID,

ViBoolean* done);

LabVIEW Representation

AqDx Query Acquisition Status.vi

Visual Basic Representation

AcqDone (ByVal instrumentID As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsD1_acqDone (ByVal instrumentID As Int32, _
 ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done]= Aq_acqDone(instrumentID)

Programmer’s Reference Manual Page 17 of 159

2.3.4 AcqrsD1_acquire

Purpose

Starts an acquisition.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acquire(ViSession instrumentID);

LabVIEW Representation

AqDx Start Acquisition.vi

Visual Basic Representation

Acquire (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_acquire (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_acquire(instrumentID)

Programmer’s Reference Manual Page 18 of 159

2.3.5 AcqrsD1_acquireEx

Purpose

Starts an acquisition.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
acquireMode ViInt32 = 0, normal

= 2, continue to accumulate (AP Averagers only)
acquireFlags ViInt32 = 0, normal

= 4, to reset the time stamp counter (10-bit-Family
only)

acquireParams ViInt32 Parameters, currently not used
reserved ViInt32 Currently not used

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_acquireEx(ViSession instrumentID ,
 ViInt32 acquireMode, ViInt32 acquireFlags,

ViInt32 acquireParams, ViInt32 reserved);

LabVIEW Representation

AqDx Start Acquisition.vi

Visual Basic Representation

AcquireEx (ByVal instrumentID As Long, ByVal acquireMode As Long, _
 ByVal acquireFlags As Long, ByVal acquireParams As Long, _
 ByVal reserved As Long) As Long

Visual Basic .NET Representation
AcqrsD1_acquireEx (ByVal instrumentID As Int32, _
 ByVal acquireMode As Int32, ByVal acquireFlags As Int32, _
 ByVal acquireParams As Int32, ByVal reserved As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_acquireEx(instrumentID, acquireMode, acquireFlags,

acquireParams, reserved)

Programmer’s Reference Manual Page 19 of 159

2.3.6 AcqrsD1_averagedData

Purpose

This function is intended for single instrument, single channel operation.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters

Input
Name Type Description

InstrumentID ViSession Instrument identifier
Channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired waveform
nbrAcq ViInt32 Number of acquisitions to be performed.
calculateMean ViBoolean TRUE to divide the sumArray by nbrAcq to get the

mean values.
FALSE to leave the sample-by-sample sums in the
sumArray.

timeout ViReal64 Acquisition timeout in seconds. The function will
return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of the
acquisition.
The minimum value is 1 ms.

Output
Name Type Description

dataArray ViAddr User-allocated waveform destination array of type char
or byte. Its size in dataType units MUST be at least
'nbrSamples' + 32, for reasons of data alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.

dataDesc AqDataDescriptor Waveform descriptor structure. The returned values
will be those of the last acquisition

segDescArray ViAddr Segment descriptor structure. The returned values will
be those of the last acquisition.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 20 of 159

Discussion

Because the acquisition control loop is done inside this function, it is suitable only for single
instrument, single channel operation.

This function uses the AcqrsD1_readData routine. However, only 'readPar->nbrSegments = 1'
and 'readPar->readMode = 0' (ReadModeStdW) are supported. 'readPar->dataType = 3' (real)
and 'readPar->dataType = 2' (long) are NOT supported.

The sumArray contains either the average values (calculateMean = TRUE), or the sample-by-
sample sums (calculateMean = FALSE). Note that, in the latter case, the sumArray can be
interpreted as an unsigned integer. Alternatively, negative values have to be increased by 2**32.

The number of acquisitions, nbrAcq, can be at most 16777216 for 'readPar->dataType = 0' (char)
or 65536 for 'readPar->dataType = 1' (short). This is to avoid an overflow where the summed
values will wrap around 0.

The value in Volts of a data point data in the returned waveformArray or normalized
sumArray can be computed with the formula:

V = dataDesc.vGain * data – dataDesc.vOffset

The function will return ACQIRIS_ERROR_ACQ_TIMEOUT if there is no trigger within the
specified timeout interval after the start of each acquisition.

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_averagedData(ViSession instrumentID,
 ViInt32 channel, AqReadParameters* readPar,

ViInt32 nbrAcq, ViInt8 calculateMean,
 ViReal64 timeout,
 void* dataArray, ViInt32 sumArray[],

AqDataDescriptor* dataDesc,
 void* segDescArray);

LabVIEW Representation

AqDx Averaged Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8 or I16.

Programmer’s Reference Manual Page 21 of 159

Visual Basic Representation

AveragedData (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 readPar As AqReadParameters, _
 ByVal nbrAcq As Long, _
 ByVal calculateMean As Boolean, _
 ByVal timeout As Double, _
 dataArray As Any, _
 sumArray As Long, _
 dataDesc As AqDataDescriptor, _
 segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_averagedData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByVal nbrAcq As Int32, _
 ByVal calculateMean As Boolean, _
 ByVal timeout As Double, _
 ByRef dataArray As Byte, _
 ByRef sumArray As Int32, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptor) As Int32

MATLAB MEX Representation

[status dataDesc segDescArray dataArray sumArray]=

Aq_averagedData(instrumentID, channel, readPar,
nbrAcq, calculateMean, timeout)

Programmer’s Reference Manual Page 22 of 159

2.3.7 AcqrsD1_averagedWform (DEPRECATED)

Purpose

This function is intended for single instrument, single channel operation. It is for use with 8-bit
Digitizers.

Perform a series of acquisitions and get the resulting averaged waveform.

Parameters

Input
Name Type Description

InstrumentID ViSession Instrument identifier
Channel ViInt32 1...Nchan
SegmentNumber ViInt32 Requested segment number, may assume 0 to the

(number of segments – 1) set with the function
AcqrsD1_configMemory.

firstSample ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1) set with
the function AcqrsD1_configMemory.

nbrSamples ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

nbrAcq ViInt32 Number of acquisitions to be performed.
timeout ViReal64 Acquisition timeout in seconds. The function will

return an error if, for each acquisition, no trigger
arrives within the specified timeout after the start of the
acquisition.
The minimum value is 1 ms.

Output
Name Type Description

waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least 'nbrSamples' + 32,
for reasons of data alignment.

sumArray ViInt32 [] User-allocated waveform accumulation array. Its size
MUST be at least 'nbrSamples'. It is a 32-bit integer
(long) array, with the sample-by-sample sum of the
data values in ADC count unit (LSB). See discussion
below.

returnedSamples ViInt32 Number of data samples actually returned
sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 23 of 159

Discussion

Because the acquisition control loop is done inside this function, it is suitable only for single
instrument, single channel operation.

The sumArray contains the sample-by-sample sums. To get the average values, the array
elements must be divided by nbrAcq.

The value in Volts of a data point data in the returned waveformArray can be computed with
the formula:

V = vGain * data - vOffset

LabWindowsCVI/Visual C++ Representation

ViStatus AcqrsD1_averagedWform (ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViInt32 nbrAcq, ViReal64 timeout,
ViChar waveformArray[], ViInt32 sumArray[],
ViInt32 *returnedSamples, ViReal64 *sampTime,
ViReal64 *vGain, ViReal64 *vOffset);

LabVIEW Representation

AqDx Read Averaged Waveform.vi should be considered to be obsolete.
Please use AqDx Averaged Data.vi instead.

Visual Basic Representation

AveragedWform (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal segmentNumber As Long, _
 ByVal firstSample As Long, _
 ByVal nbrSamples As Long, _
 ByVal nbrAcq As Long, _
 ByVal timeout As Double, _
 waveformArray As Byte, _
 sumArray As Long, _
 returnedSamples As Long, _
 sampTime As Double, _
 vGain As Double, _
 vOffset As Double) As Long

Programmer’s Reference Manual Page 24 of 159

2.3.8 AcqrsD1_bestNominalSamples

Purpose

Helper function to simplify digitizer configuration. It returns the maximum nominal number of
samples that fit into the available memory.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nomSamples ViInt32 Maximum number of data samples available

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When using this method, make sure to use AcqrsD1_configHorizontal and
AcqrsD1_configMemory beforehand to set the sampling rate and the number of segments to the
desired values (nbrSamples in AcqrsD1_configMemory may be any number!).
AcqrsD1_bestNominalSamples depends on these variables.

Programmer’s Reference Manual Page 25 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_bestNominalSamples(ViSession instrumentID,

ViInt32* nomSamples);

LabVIEW Representation

AqDx Query Best Nominal Samples.vi

Visual Basic Representation

BestNominalSamples (ByVal instrumentID As Long, _
 nomSamples As Long) As Long

Visual Basic .NET Representation

AcqrsD1_bestNominalSamples (ByVal instrumentID As Int32, _
 ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status nomSamples]= Aq_bestNominalSamples(instrumentID)

Programmer’s Reference Manual Page 26 of 159

2.3.9 AcqrsD1_bestSampInterval

Purpose

Helper function to simplify digitizer configuration. It returns the best possible sampling rate for
an acquisition, which covers the timeWindow with no more than maxSamples. The calculation
takes into account the current state of the instrument, in particular the requested number of
segments. In addition, this routine returns the "real" nominal number of samples that can be
accommodated (it is computed as timeWindow/samplingInterval!).

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
maxSamples ViInt32 Maximum number of samples to be used
timeWindow ViReal64 Time window to be covered, in seconds

Output
Name Type Description

sampInterval ViReal64 Recommended sampling interval in seconds
nomSamples ViInt32 Recommended number of data samples

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns the value status = ACQIRIS_ERROR_SETUP_NOT_AVAILABLE when
the available memory is too short, and the longest available sampling interval too short. The
returned sampling interval is the longest one possible. It returns VI_SUCCESS when a good
solution has been found.

NOTE: This function does not modify the state of the digitizer at all. It simply returns a
recommendation that the user is free to override.

NOTE: When using this method, make sure to use AcqrsD1_configMemory beforehand to set
the number of segments to the desired value (nbrSamples may be any number!).
AcqrsD1_bestSampInterval depends on this variable.

NOTE: The returned "recommended" values for the sampling interval sampInterval and the
nominal number of samples nomSamples are expected to be used for configuring the instrument
with calls to AcqrsD1_configMemory and AcqrsD1_configHorizontal. Make sure to use the
same number of segments in this second call to AcqrsD1_configMemory, as in the first one.

Programmer’s Reference Manual Page 27 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_bestSampInterval(ViSession instrumentID,

ViInt32 maxSamples, ViReal64 timeWindow,
ViReal64* sampInterval, ViInt32* nomSamples);

LabVIEW Representation

AqDx Query Best Sampling Interval.vi

Visual Basic Representation

BestSampInterval (ByVal instrumentID As Long, _
 ByVal maxSamples As Long, _
 ByVal timeWindow As Double, _
 sampInterval As Double, _
 nomSamples As Long) As Long

Visual Representation

AcqrsD1_bestSampInterval (ByVal instrumentID As Int32, _
 ByVal maxSamples As Int32, _
 ByVal timeWindow As Double, _
 ByRef sampInterval As Double, _
 ByRef nomSamples As Int32) As Int32

MATLAB MEX Representation

[status sampInterval nomSamples]= Aq_bestSampInterval(instrumentID,

maxSamples, timeWindow)

Programmer’s Reference Manual Page 28 of 159

2.3.10 AcqrsD1_calibrate

Purpose

Performs an auto-calibration of the instrument.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_calibrate(ViSession instrumentID);

LabVIEW Representation

AqDx Calibrate Instrument.vi

Visual Basic Representation

Calibrate (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_calibrate (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrate(instrumentID)

Programmer’s Reference Manual Page 29 of 159

2.3.11 AcqrsD1_calibrateEx

Purpose

Performs a (partial) auto-calibration of the instrument.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
calType ViInt32 = 0 calibrate the entire instrument

= 1 calibrate only the current channel configuration
= 2 calibrate external clock timing. Requires operation
 in External Clock (Continuous).
= 3 calibrate only at the current frequency
 (12-bit-FAMILY, only)
= 4 fast calibration for current settings only

modifier ViInt32 For calType = 0,1, or 2: Currently unused, set to “0”
For calType = 3 or 4, 0 = calibrate for all channels
 n = calibrate for channel "n"

flags ViInt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Calling this function with calType = 0 is equivalent to calling AcqrsD1_calibrate.

Calibrating with calType = 1 reduces the calibration time in digitizers with many possible
channel combinations, e.g. the DC271. However, the user must keep track of which channel
combinations were calibrated, and request another such partial calibration when changing the
channel configuration with the function AcqrsD1_configChannelCombination.

Calibrating with calType = 2 can only be done if the external input frequency is appropriately
high. See the discussion in the Programmer's Guide section 3.14.2, External Clock
(Continuous). If the calibration cannot be done an error code will be returned. It is not
applicable for AP240 Signal Analyzer Platforms.

Calibrating with calType = 3 is for 12-bit digitizers only and is needed to support the HRes SR
functionality. For best results it, or the longer full calibration, should be called after a change of
sampling rate.

Calibrating with calType = 4 is for DC135, DC140, DC211A, DC241A, DC271A, DC271AR
and 10-bit-FAMILY models. A new calibration should be done if the AcqrsD1_
configChannelCombination parameters or any of the following AcqrsD1_configVertical
parameters are changed: fullScale, coupling (impedance), bandwidth, channel. This calibration
will be much faster than the calType = 0 case for models with more than one impedance setting.

Programmer’s Reference Manual Page 30 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_calibrateEx(ViSession instrumentID,
 ViInt32 calType, ViInt32 modifier, ViInt32

flags);

LabVIEW Representation

AqDx CalibrateEx Instrument.vi

Visual Basic Representation

CalibrateEx (ByVal instrumentID As Long, _
 ByVal calType As Long, _
 ByVal modifier As Long, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_calibrateEx (ByVal instrumentID As Int32, _
 ByVal calType As Int32, _
 ByVal modifier As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_calibrateEx(instrumentID, calType, modifier, flags)

Programmer’s Reference Manual Page 31 of 159

2.3.12 AcqrsD1_close

Purpose

Closes an instrument.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion
Close the specified instrument. Once closed, this instrument is not available anymore and needs to be
reenabled using 'InitWithOptions' or 'init'.
For freeing properly all resources, 'closeAll' must still be called when the application closes, even if 'close'
was called for each instrument.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_close(void);

LabVIEW Representation

AqDx Close.vi

Visual Basic Representation

Close(ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_close (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_close(instrumentID)

Programmer’s Reference Manual Page 32 of 159

2.3.13 AcqrsD1_closeAll

Purpose

Closes all instruments in preparation for closing the application.

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be the last call to the driver, before closing an application. Make sure to
stop all instruments beforehand.

If this function is not called, closing the application might crash the computer in some situations,
particularly in multi-threaded applications.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_closeAll(void);

LabVIEW Representation

AqDx Close All Instruments.vi

Visual Basic Representation

CloseAll () As Long

Visual Basic .NET Representation

AcqrsD1_closeAll () As Int32

MATLAB MEX Representation

[status]= Aq_closeAll()

Programmer’s Reference Manual Page 33 of 159

2.3.14 AcqrsD1_configAvgConfig

Purpose

Configures a parameter for averager/analyzer operation.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number. A value = 0 will be treated as =1 for

compatibility.
parameterString ViString Character string defining the requested parameter.

See below for the list of accepted strings.
value ViAddr Value to set. ViAddr resolves to void* in C/C++. The

user must allocate the appropriate variable type (as listed
below), set it to the requested value and supply its address
as 'value'.

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Accepted Parameter Strings

Parameter String Data
Type

Description

"DitherRange" ViInt32 Range of offset dithering, in ADC LSB’s. May assume
values v = 0, 1…15. The offset is dithered over the range
 [-v, + v] in steps of ~1/8 LSB. For Averagers ONLY.

"FixedSamples" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AdvancedTDC ONLY.
Number of samples transmitted for each point over
threshold. It must be a multiple of 4. 0 = No limit imposed.

"GateType" ViInt32 For AP240/AP235 Analyzers and AdvancedTDC ONLY.
 0 = No gates
 1 = User Gates
 2 = Threshold Gates
For AdvancedTDC a gate mode must be chosen.

"HistoTDCEnable" ViInt32 For AP240/AP235 Averagers ONLY.
May assume 0 for not enabled and
 1 to enable the simple TDC mode for the channel

"InvertData" ViInt32 May assume 0 (no inversion) and
 1 (invert data, 1’s complement).

"NbrMaxGates" ViInt32 For Threshold Gate type in AP240/AP235 Analyzers and
AdvancedTDC ONLY.
Maximum number of gates allowed for each segment.
 0 = No limit imposed

"NbrSamples" ViInt32 Number of data samples per waveform segment. May
assume values between 16 or 32 and the available memory
length, in multiples of 16 (32) as explained below.

"NbrSegments" ViInt32 Number of waveform segments to acquire. May assume
values between 1 and 8192.

"NbrWaveforms" ViInt32 Number of waveforms to average before going to next
segment. May assume values between 1 and 65535 (64K –
1). For Averagers ONLY.

"NbrRoundRobins" ViInt32 Number of times to perform the full segment cycle during
data accumulation. For AP240/AP235 Averagers and

Programmer’s Reference Manual Page 34 of 159

Parameter String Data
Type

Description

AdvancedTDC ONLY.
"NoiseBaseEnable" ViInt32 May assume 0 (no base subtraction) and 1 (base subtraction

enabled). It can only be enabled if the threshold is enabled.
For Averagers ONLY.

"NoiseBase" ViReal64 Value in Volts of the value to be added in Noise Supressed
Averaging. For Averagers ONLY.

"P1Control"

ViInt32 May assume 0 = not enabled
 For AP240/AP235 Averagers ONLY.
 1 = addSub channel 1
 2 = addSub channel 2
 3 = addSub channel 1 + 2
 4 = average trigger enable
 5 = start veto enable
 6 = average (out)
For AP240/AP235 SSR ONLY.
 1 = Timestamp reset enable

"P2Control" ViInt32 May assume 0 = not enabled
 For AP240/AP235 Averagers ONLY.
 1 = addSub channel 1
 2 = addSub channel 2
 3 = addSub channel 1 + 2
 4 = average trigger enable
 5 = start veto enable
 6 = average (out)
For AP240/AP235 SSR ONLY.
 1 = Timestamp reset enable

"PostSamples" ViInt32 For AP240/AP235 SSR and AdvancedTDC Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples after the last one satisfying the threshold condition.
The meaningful values are 0,4,8,12,16. Other values will be
rounded up or adapted appropriately.

"PreSamples" ViInt32 For AP240/AP235 SSR and AdvancedTDC Analyzers in
Threshold Gate mode. Used to guarantee a number of
samples before the first one satisfying the threshold
condition.
The meaningful values are 0,4,8,12,16. Other values will
be rounded up or adapted appropriately.

"StartDelay" ViInt32 Start delay in samples. May assume values between 0 and
33554400(16777216) in steps of 16 (32) as explained
below. The limit is StepSize*(1024*1024-1).

"StartDeltaNegPeak" ViInt32
Negative excursion needed before searching for negative
peak. For AP101/AP201 Analyzers ONLY.

"StartDeltaPosPeak" ViInt32
Positive excursion needed before searching for positive
peak. May assume values between 1 and 0xff. For
AP101/AP201 Analyzers ONLY.

"StartDeltaPosPeakV" ViReal64
Positive excursion needed before searching for positive
peak. Must be positive. For AdvancedTDC mode
Analyzers ONLY.

"StartVetoEnable" ViInt32 For AP100/AP200 Averagers ONLY
May assume 0 = for trigger enable functionality
 and 1 = use high state of I/O signal to allow the
average accumulation to start. Must be used in conjunction
with AcqrsD1_configControlIO.

"StopDelay " ViInt32 Stop delay in samples. May assume values between 0 and
2097120(1048560) in steps of of 16 (32) as explained
below. The limit is StepSize*(64*1024-1)

"TdcHistogramDepth" ViInt32
The depth of the histogram for AdvancedTDC mode.
0 means 16-bit accumulation bins.
1 means 32-bit accumulation bins.

Programmer’s Reference Manual Page 35 of 159

Parameter String Data
Type

Description

"TdcHistogramHorzRes" ViInt32

The horizontal resolution of the histogram for interpolated
peaks in the AdvancedTDC mode.
0 means that each bin corresponds to a sampling interval.
≤4 means that each bin corresponds to ½**n of a sampling
interval.

"TdcHistogramIncrement" ViInt32

The desired increment to be applied for each entry;
1 means increment by 1, for SimpleTDC Averager and
 AdvancedTDC Analyzer modes ONLY.
2 means increment by the ADCvalue – NoiseBase for a
 SimpleTDC Averager
 and by the ADCvalue for the AdvancedTDC Analyzer

"TdcHistogramMode" ViInt32

The type of histogram for AdvancedTDC mode ONLY.
0 means no histogram. Data only is available for each
 acquisition.
1 for a histogram.

"TdcHistogramVertRes" ViInt32

The vertical resolution of the histogram for interpolated
peaks when the TDCHistogramIncrement is 2 in the
AdvancedTDC mode.
0 means that each bin corresponds to a sampling interval.
≤4 means that each bin corresponds to ½**n of a sampling
interval.

"TdcMinTOT" ViInt32

The desired minimum width of a peak in the waveform;
It can take on a value (n) from 1 to 4. A peak is accepted if
there are at least n consecutive data samples above the
Threshold. For SimpleTDC mode ONLY.

"TdcOverlaySegments"

ViInt32

This option controls the horizontal binning of data in the
AdvancedTDC histogram mode.
0 means that each segment will be histogrammed
 independently.
1 means that all segments will be histogrammed on a
 common time axis.

"TdcProcessType"
ViInt32 The desired processing for AdvancedTDC mode peak

finding. May assume
 0 = No processing
 1 = Standard peak finding (no interpolation)
 2 = Interpolated peaks
 3 = 8 sample peak regions for data readout
 4 = 16 sample peak regions for data readout

"ThresholdEnable" ViInt32 May assume 0 (no threshold) and 1 (threshold enabled). For
Averagers ONLY.

"Threshold" ViReal64 Value in Volts of the threshold for Noise Supressed
Averaging or for SSR or AdvancedTDC with Threshold
Gates.

"TrigAlways" ViInt32 May assume 0 (no trigger output) and 1 (trigger output on),
in the case of no acquisition.

"TriggerTimeout" ViInt32

Trigger timeout in units of 30 ns in the range [0,232 - 1].
A value of 0 means that no trigger will be generated and no
Prepare for Trigger signal will be needed. For
AP101/AP201 ONLY.

"TrigResync" ViInt32 May assume 0 (no resync), 1 (resync) and 2 (free run)

"ValidDeltaNegPeak" ViInt32
Positive excursion needed to validate a negative peak. May
assume values between 1 and 0xff. For AP101/AP201
ONLY.

"ValidDeltaPosPeak" ViInt32
Negative excursion needed to validate a positive peak. May
assume values between 1 and 0xff. For AP101/AP201
ONLY.

"ValidDeltaPosPeakV" ViReal64
Negative excursion needed to validate a positive peak. Must
be positive. For AdvancedTDC mode Analyzers ONLY.

Programmer’s Reference Manual Page 36 of 159

Discussion

The "TrigResync" values 0 and 1 require a valid trigger, while 2 requires no trigger (useful for
background acquisition).

Set NbrWaveforms to 1 and NbrRoundRobins to n order to enable the round-robin segment
acquisition mode with n triggers for each segment.

The channelNbr is used to designate the channel number for those parameters whose values can
be different for the two channels of an AP240/AP235 in dual-channel mode. These parameters
are indicated in bold in the list above.

The granularity for "NbrSamples","StartDelay", and "StopDelay" is 16 for the AP100/AP101
and the AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the
AP240/AP235 in Single-Channel mode.

If P1Control and/or P2Control are enabled for the Add/Subtract mode then the data will be added
if the signal, or the or of both signals, is in the high state. The same rule holds if they are used for
trigger enable.

The P1Control/P2Control "average (out)" signal goes high after the first trigger is accepted for
an average and drops back down when the last trigger's acquition is complete.

Example
long channelNbr = 0, dither = 8;
AcqrsD1_configAvgConfig(ID, channelNbr, "DitherRange", &dither);

This function sets the dithering range to ± 8 LSB’s.

Note that this function takes the address, not the value of the parameter to be set.

Programmer’s Reference Manual Page 37 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configAvgConfig(ViSession instrumentID,

ViInt32 channelNbr, ViString parameterString,
ViAddr value);

LabVIEW Representation

AqDx Extended Configure Averager.vi
 This Vi is polymorphic, the value can be either I32 or DBL.

Visual Basic Representation

ConfigAvgConfig (ByVal instrumentID As Long, _
 ByVal channelNbr As Long, _
 ByVal parameterString As String, _
 value As Any) As Long

Visual Basic .NET Representation

AcqrsD1_configAvgConfig (ByVal instrumentID As Int32, _
 ByVal channelNbr As Int32, _
 ByVal parameterString As String, _
 ByRef value As Int32) As Int32
or

AcqrsD1_configAvgConfig (ByVal instrumentID As Int32, _
 ByVal channelNbr As Int32, _
 ByVal parameterString As String, _
 ByRef value As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configAvgConfig(instrumentID, channel, parameterString,

value)

Programmer’s Reference Manual Page 38 of 159

2.3.15 AcqrsD1_configChannelCombination

Purpose

Configures how many converters are to be used for which channels. This routine is for use with
some DC271-FAMILY instruments, the 10-bit-FAMILY, the AC/SC240, and the AP240/AP235
Signal Analyzer platforms.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
nbrConvertersPer
Channel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The acceptable values for 'usedChannels' depend on 'nbrConvertersPerChannel' and on the
number of available channels in the digitizer:
 A) If 'nbrConvertersPerChannel' = 1, 'usedChannels' must reflect the fact that ALL channels are
available for use. It accepts a single value for a given digitizer:
 'usedChannels' = 0x00000001 if the digitizer has 1 channel
 = 0x00000003 if the digitizer has 2 channels
 = 0x0000000f if the digitizer has 4 channels
 B) If 'nbrConvertersPerChannel' = 2, 'usedChannels' must reflect the fact that only half of the
channels may be used:
 'usedChannels' = 0x00000001 use channel 1 on a 2-channel digitizer
 = 0x00000002 use channel 2 on a 2-channel digitizer
 = 0x00000003 use channels 1+2 on a 4-channel digitizer
 = 0x00000005 use channels 1+3 on a 4-channel digitizer
 = 0x00000009 use channels 1+4 on a 4-channel digitizer
 = 0x00000006 use channels 2+3 on a 4-channel digitizer
 = 0x0000000a use channels 2+4 on a 4-channel digitizer
 = 0x0000000c use channels 3+4 on a 4-channel digitizer
 C) If 'nbrConvertersPerChannel' = 4, 'usedChannels' must reflect the fact that only 1 of the
channels may be used:
 'usedChannels' = 0x00000001 use channel 1 on a 4-channel digitizer
 = 0x00000002 use channel 2 on a 4-channel digitizer
 = 0x00000004 use channel 3 on a 4-channel digitizer
 = 0x00000008 use channel 4 on a 4-channel digitizer
NOTE: Digitizers which don't support channel combination, always use the default
 'nbrConvertersPerChannel' = 1, and the single possible value of 'usedChannels'
NOTE: Changing the channel combination doesn't change the names of the channels; they are
always the same.
NOTE: If digitizers are combined with ASBus, the channel combination applies equally to
 all participating digitizers.

Programmer’s Reference Manual Page 39 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configChannelCombination(
 ViSession instrumentID,
 ViInt32 nbrConvertersPerChannel,
 ViInt32 usedChannels);

LabVIEW Representation

AqDx Configure Channel Combination.vi

Visual Basic Representation

ConfigChannelCombination (ByVal instrumentID As Long, _
 ByVal nbrConvertersPerChannel As Long, _
 ByVal usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configChannelCombination (ByVal instrumentID As Int32, _
 ByVal nbrConvertersPerChannel As Int32, _
 ByVal usedChannels As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configChannelCombination(instrumentID,

nbrConvertersPerChannel, usedChannels)

Programmer’s Reference Manual Page 40 of 159

2.3.16 AcqrsD1_configControlIO

Purpose

Configures a ControlIO connector. (For DC271-FAMILY/AP-FAMILY/12-bit-FAMILY/10-bit
FAMILY and AC/SC only)

Parameters

Input
Name Type Description

InstrumentID ViSession Instrument identifier
Connector ViInt32 Connector Number

 1 = Front Panel I/O A (MMCX connector)
 2 = Front Panel I/O B (MMCX connector)
 9 = Front Panel Trigger Out (MMCX connector)
11 = PXI Bus 10 MHz (DC135/DC140/DC211/
 DC211A/DC241/DC241A/DC271/DC271A/
 DC271AR)
12 = PXI Bus Star Trigger (same models as above)

Signal ViInt32 The accepted values depend on the type of connector
See the table below for details.

qualifier1 ViInt32 The accepted values depend on the type of connector
See the table below for details.

qualifier2 ViReal64 If trigger veto functionality is available (AP101/AP201
only), accepts values between 30 ns and 1.0 sec. The
trigger veto values given will be rounded off to steps of
33 ns. A value of 0.0 means that no holdoff is required
and no Prepare for Trigger signal will be needed.

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Accepted Values of signal vs. Connector Type

Connector Type Possible Values of signal and qualifierX
Front Panel I/O 0 = Disable

 Inputs:
 6 = (Level) Enable trigger input (for Digitizers)
 If one of the two I/O connectors is set to this value then a
 high level must be present before an edge can be accepted.
 If both I/O connectors are set to this value, they both must
 be high before the trigger edge can be accepted.
 6 = (Level) Enable trigger input or Start Veto (for AP100/AP200
 Averagers) see AcqrsD1_configAvgConfig for more
 8 = Prepare for Trigger signal present on this connector.
 qualifier2 gives the desired holdoff in time.
 9 = Gate signal for FC option totalize in gate functionality.

 Outputs:
19 = (Clock) 10 MHz reference clock
20 = (Pulse) Acquisition skips to next segment (in sequence
 acquisition mode) input
 (Not for AP240/AP235 Signal Analyzers).
21 = (Level) Acquisition is active
22 = (Level) Trigger is armed (ready)
 The values of qualifier1 and qualifier2 are not used

Programmer’s Reference Manual Page 41 of 159

Connector Type Possible Values of signal and qualifierX
Front Panel Trigger Out The value of signal is interpreted as a signal offset in mV.

E.g. signal = -500 offsets the output signal by –500 mV. The
accepted range of signal is [-2500,2500], i.e. ± 2.5 V with a
resolution of ~20 mV.
The value of qualifier1 controls if the trigger output is
resynchronized to the clock or maintains a precise timing relation to
the trigger input.
qualifier1= 0 (default): Non-resynchronized
qualifier1= 1 : Resynchronized to sampling clock

PXI Bus 10 MHz 0 = Disable
1 = Enable
Replaces the internal 10 MHz reference clock with the 10 MHz
clock on the PXI rear panel connector.

PXI Bus Star Trigger 0 = Disable
1 = Use PXI Bus Star Trigger as Trigger Input
2 = Use PXI Bus Star Trigger for Trigger Output
Note: When using this connector as Trigger Input, you also must
set the trigger source in sourcePattern in the function
AcqrsD1_configTrigClass to External Trigger2!

Discussion

ControlIO connectors are front panel IO connectors for special purpose control functions of the
digitizer. Typical examples are user-controlled acquisition control (start/stop/skip) or control
output signals such as ‘acquisition ready’ or ‘trigger ready’.

The connector numbers are limited to the allowed values. To find out which connectors are
supported by a given module, use the query function AcqrsD1_getControlIO.

The variable signal specifies the (programmable) use of the specified connector.

In order to set I/O A as a ‘Enable Trigger’ input and the I/O B as a 10 MHz reference output, use
the function calls

 AcqrsD1_configControlIO(instrID, 1, 6, 0, 0.0);
 AcqrsD1_configControlIO(instrID, 2, 19, 0, 0.0);

In order to obtain a signal offset of +1.5 V on the Trigger Output, use the call
 AcqrsD1_configControlIO(instrID, 9, 1500, 0, 0.0);

Programmer’s Reference Manual Page 42 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configControlIO(ViSession instrumentID,

ViInt32 connector, ViInt32 signal,
ViInt32 qualifier1, ViReal64 qualifier2);

LabVIEW Representation

AqDx Configure Control IO Connectors.vi

Visual Basic Representation

ConfigControlIO (ByVal instrumentID As Long, _
 ByVal connector As Long, _
 ByVal signal As Long, _
 ByVal qualifier1 As Long, _
 ByVal qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configControlIO (ByVal instrumentID As Int32, _
 ByVal connector As Int32, _
 ByVal signal As Int32, _
 ByVal qualifier1 As Int32, _
 ByVal qualifier2 As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configControlIO(instrumentID, connector, signal,

qualifier1, qualifier2)

Programmer’s Reference Manual Page 43 of 159

2.3.17 AcqrsD1_configExtClock

Purpose

Configures the external clock of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
clockType ViInt32 = 0 Internal Clock (default at start-up)

= 1 External Clock, continuously running
= 2 External Reference (10 MHz)
= 4 External Clock, with start/stop sequence

inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples ViInt32 Number of samples to acquire after trigger (for

digitizers using 'clockType' = 1 only!)
inputFrequency ViReal64 The input frequency of the external clock, for

clockType = 1 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 1

only

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

When clockType is set to 1 or 4, the parameters of the function AcqrsD1_configHorizontal are
ignored! Please refer to your product User Manual, for the conditions on the clock signals, and to
the Programmer’s Guide section 3.14, External Clock, for the setup parameters and the theory
of operation.

Programmer’s Reference Manual Page 44 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configExtClock(ViSession instrumentID,

ViInt32 clockType, ViReal64 inputThreshold,
ViInt32 delayNbrSamples, ViReal64 inputFrequency,
ViReal64 sampFrequency);

LabVIEW Representation

AqDx Configure External Clock.vi

Visual Basic Representation

ConfigExtClock (ByVal instrumentID As Long, _
 ByVal clockType As Long, _
 ByVal inputThreshold As Double, _
 ByVal delayNbrSamples As Long, _
 ByVal inputFrequency As Double, _
 ByVal sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configExtClock (ByVal instrumentID As Int32, _
 ByVal clockType As Int32, _
 ByVal inputThreshold As Double, _
 ByVal delayNbrSamples As Int32, _
 ByVal inputFrequency As Double, _
 ByVal sampFrequency As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configExtClock(instrumentID, clockType, inputThreshold,

delayNbrSamples, inputFrequency, sampFrequency)

Programmer’s Reference Manual Page 45 of 159

2.3.18 AcqrsD1_configFCounter

Purpose

Configures a frequency counter measurement

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value, may be
0.0 if no estimate is available.

apertureTime ViReal64 Time in sec, during which the measurement is
executed, see discussion below.

reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The Frequency mode (type = 0) measures the frequency of the signal applied to the selected
‘signalChannel’ during the aperture time. The default value of ‘apertureTime’ is 0.001 sec and
can be set to any value between 0.001 and 1000.0 seconds. A longer aperture time may improve
the measurement accuracy, if the (externally applied) reference clock has a high accuracy and/or
if the signal slew rate is low.
The ‘targetValue’ is a user-supplied estimated of the expected result, and helps in choosing the
optimal measurement conditions. If the supplied value is < 1000.0, and > 0.0, then the instrument
will not use the HF trigger mode to divide the input frequency. Otherwise, it divides it by 4 in
order to obtain a larger frequency range.

The Period mode (type = 1) is equal to the frequency mode, but the function
AcqrsD1_readFCounter returns the inverse of the measured frequency. If the ‘targetValue’ is <
0.001 (1 ms), then the instrument will not use the HF trigger mode, otherwise it does.

The Totalize by Time mode (type = 2) counts the number of pulses in the signal applied to the
selected ‘signalChannel’ during the time defined by ‘apertureTime’. The ‘targetValue’ is
ignored.

The Totalize by Gate mode (type = 3) counts the number of pulses in the signal applied to the
selected ‘signalChannel’ during the time defined by signal at the I/O A or I/O B inputs on the
front panel. The gate is open while the signal is high, and closed while the signal is low (if no
signal is connected, counting will be enabled, since there is an internal pull-up resistor). The gate
may be opened/closed several times during the measurement. The measurement must be
terminated with the function AcqrsD1_stopAcquisition.

Programmer’s Reference Manual Page 46 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configFCounter(ViSession instrumentID,
 ViInt32 signalChannel, ViInt32 type, ViReal64 targetValue,
 ViReal64 apertureTime,ViReal64 reserved, ViInt32 flags);

LabVIEW Representation

AqDx Configure FCounter.vi

Visual Basic Representation

ConfigFCounter (ByVal instrumentID As Long, _
 ByVal signalChannel As Long, _
 ByVal type As Long, _
 ByVal targetValue As Double, _
 ByVal apertureTime As Double, _
 ByVal reserved As Double, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configFCounter (ByVal instrumentID As Int32, _
 ByVal signalChannel As Int32, _
 ByVal type As Int32, _
 ByVal targetValue As Double, _
 ByVal apertureTime As Double, _
 ByVal reserved As Double, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configFCounter(instrumentID, signalChannel, typeMes,

targetValue, apertureTime, reserved, flags)

Programmer’s Reference Manual Page 47 of 159

2.3.19 AcqrsD1_configHorizontal

Purpose

Configures the horizontal control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds, with respect to the

beginning of the record. A positive number
corresponds to a trigger before the beginning of the
record (post-trigger recording). A negative number
corresponds to pre-trigger recording. It can’t be less
than -(sampInterval * nbrSamples), which corresponds
to 100% pre-trigger.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Refer to the Programmer’s Guide section 3.10, Trigger Delay and Horizontal Waveform
Position, for a detailed discussion of the value delayTime.

Programmer’s Reference Manual Page 48 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configHorizontal(ViSession instrumentID,

ViReal64 sampInterval, ViReal64 delayTime);

LabVIEW Representation

AqDx Configure Horizontal Settings.vi

Visual Basic Representation

ConfigHorizontal (ByVal instrumentID As Long, _
 ByVal sampInterval As Double, _
 ByVal delayTime As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configHorizontal (ByVal instrumentID As Int32, _
 ByVal sampInterval As Double, _
 ByVal delayTime As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configHorizontal(instrumentID, sampInterval, delayTime)

Programmer’s Reference Manual Page 49 of 159

2.3.20 AcqrsD1_configLogicDevice

Purpose

Configures (programs) on-board logic devices, such as user-programmable FPGA’s.

NOTE: With the exception of AC and SC Analyzers, this function now needs to be used only by
ETS and VxWorks users to specify the filePath for FPGA .bit files. Otherwise it should no
longer have to be used

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to program

For the AC210/AC240 and SC210/SC240 modules
this string must be "Block1Dev1". Alternatively it can
be "ASBUS::n::Block1Dev1" with n ranging from 0
to the number of modules -1.
When clearing the FPGA’s, the string must be
"Block1DevAll".

filePathName ViChar [] File path and file name
flags ViInt32 flags, may be:

0 = program logic device with data in the file
 “filePathName”
1 = clear the logic device
2 = set path where FPGA .bit files can be found
3 = 0 + use normal search order with AqDrv4.ini file

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

With flags = 2 in ETS or VxWorks systems, the filePathName must point to a directory
containing the FPGA configuration files with extension ‘.bit’

With flags = 0 or 3, the filePathName must point to an FPGA configuration file with extension
‘.bit’, e.g. “D:\Averagers\FPGA\AP100DefaultFPGA1.bit”.
For more details on programming on-board logic devices, please refer to the Programmer’s
Guide sections 3.2, Device Initialization and 3.3, Device Configuration.

Programmer’s Reference Manual Page 50 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configLogicDevice(ViSession instrumentID,
 ViChar deviceName[], ViChar filePathName[],
 ViInt32 flags);

LabVIEW Representation

AqDx Configure Logic Device.vi

Visual Basic Representation

ConfigLogicDevice (ByVal instrumentID As Long, _
 ByVal deviceName As String, _
 ByVal filePathName As String, _
 ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configLogicDevice (ByVal instrumentID As Int32, _
 ByVal deviceName As String, _
 ByVal filePathName As String, _
 ByVal modifier As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configLogicDevice(instrumentID, deviceName, filePathName,

flags)

Programmer’s Reference Manual Page 51 of 159

2.3.21 AcqrsD1_configMemory

Purpose

Configures the memory control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
nbrSamples ViInt32 Nominal number of samples to record (per segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to the

normal single-trace acquisition mode.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMemory(ViSession instrumentID,

ViInt32 nbrSamples, ViInt32 nbrSegments);

LabVIEW Representation

AqDx Configure Memory Settings.vi

Visual Basic Representation

ConfigMemory (ByVal instrumentID As Long, _
 ByVal nbrSamples As Long, _
 ByVal nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMemory (ByVal instrumentID As Int32, _
 ByVal nbrSamples As Int32, _
 ByVal nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configMemory(instrumentID, nbrSamples, nbrSegments)

Programmer’s Reference Manual Page 52 of 159

2.3.22 AcqrsD1_configMemoryEx

Purpose

Extended configuration of the memory control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
nbrSamplesHi ViUInt32 Must be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to the

normal single-trace acquisition mode.
nbrBanks ViInt32 Must be set to 1 (reserved for future use)
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (for 10-bit-FAMILY
 digitizers with extended memory options only).

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This routine is needed to access the new features of some of the 10-bit-FAMILY digitizers.

In an instrument equipped with external memory, flags = 1 will force the use of internal memory
which give a lower dead time between segments of a sequence acquisition.

Programmer’s Reference Manual Page 53 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMemoryEx(ViSession instrumentID,

ViUInt32 nbrSamplesHi, ViUInt32 nbrSamplesLo,
ViInt32 nbrSegments, ViInt32 nbrBanks,

 ViInt32 flags);

LabVIEW Representation

AqDx Configure Extended Memory Settings.vi

Visual Basic Representation

ConfigMemoryEx (ByVal instrumentID As Long, _
 ByVal nbrSamplesHi As Long, _
 ByVal nbrSamplesLo As Long, _
 ByVal nbrSegments As Long, -
 ByVal nbrBanks As Long, -
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMemoryEx (ByVal instrumentID As Int32, _
 ByVal nbrSamplesHi As UInt32, _
 ByVal nbrSamplesLo As UInt32, _
 ByVal nbrSegments As Int32, -
 ByVal nbrBanks As Int32, -
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configMemoryEx(instrumentID, nbrSamplesHi, nbrSamplesLo,

nbrSegments, nbrBanks, flags)

Programmer’s Reference Manual Page 54 of 159

2.3.23 AcqrsD1_configMode

Purpose

Configures the operational mode of Averagers and Analyzers. It doesn’t apply to digitizers.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
mode ViInt32 0 = normal data acquisition

2 = averaging mode (only in real-time averagers)
3 = buffered data acquisition (only in AP101/AP201
 analyzers)
5 = AdvancedTDC mode for Analyzers with this
 option.
6 = frequency counter mode
7 = AP235/AP240-SSR mode

modifier ViInt32 Currently not used, set to 0
flags ViInt32 If ‘mode’ = 0, this variable can take these values:

 0 = ‘normal’ (default value)
 1 = ‘Start on Trigger’ mode
 2 = ‘Sequence Wrap’ mode

If ‘mode’ = 2, this variable is not used (set to 0).

For AP101/AP201 units, if ‘mode’ = 3, this variable
can take these values:
 0 = acquire into 1st memory bank
 1 = acquire into 2nd memory bank

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

Most digitizers only permit the default mode = 0. Real-time averagers support the normal data
acquisition mode (0) and the averager mode (2). The analyzers (digitizers with buffered
acquisition memory) (AP101/AP201 and AP235/AP240 with SSR) support both the normal data
acquisition mode (0) and the buffered mode (3).

The normal data acquisition mode (0) supports the following submodes:

• flags = 0: normal digitizer mode

• flags = 1: ‘StartOnTrigger’ mode, whereby data recording only begins after the receipt
of a valid trigger. For details, see Programmer’s Guide section 3.16, Special
Operating Modes.

• flags = 2: ‘Sequence Wrap’ mode, whereby a multi-segment acquisition (with
‘nbrSegments’ > 1, when configured with the function AcqrsD1_configMemory), does
not stop after ‘nbrSegments’, but wraps around to zero, indefinitely. Thus, such
acquisitions must be stopped with the function AcqrsD1_stopAcquisition at the
appropriate moment. The digitizer memory then contains the last (nbrSegments-1)
waveform segments. For details, see Programmer’s Guide section 3.16, Special
Operating Modes.

Programmer’s Reference Manual Page 55 of 159

The averaging mode (2) has the following differences from the default mode (0):

• The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition,
whereas in mode 2, it makes the instrument run as a real-time averager.

• The function AcqrsD1_readData() with dataType = ReadReal64: In mode 0, it returns
the last acquired waveform, whereas in mode 2, it returns the averaged waveform (in Volts).

The buffered data acquisition mode (3) and the SSR mode (7) have the following differences
from the default mode (0):

• The function AcqrsD1_acquire(): In mode 0, it starts a normal waveform acquisition,
whereas in modes 3 or 7, it starts an acquisition into the next memory bank or a special
memory bank, as defined by flags.

• The functions AcqrsD1_readData(): In mode 0, they return the last acquired waveform
from the normal acquisition memory, whereas in mode 3, they return data from a memory
bank (opposite to what is defined by flags).

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMode(ViSession instrumentID,
 ViInt32 mode, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

AqDx Configure Operation Mode.vi

Visual Basic Representation

ConfigMode (ByVal instrumentID As Long, _
 ByVal mode as Long, _
 ByVal modifier As Long, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMode (ByVal instrumentID As Int32, _
 ByVal mode as Int32, _
 ByVal modifier As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configMode(instrumentID, mode, modifier, flags)

Programmer’s Reference Manual Page 56 of 159

2.3.24 AcqrsD1_configMultiInput

Purpose

Selects the active input when there are multiple inputs on a channel. It is useful for Averagers,
Analyzers, and some digitizer models.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
input ViInt32 = 0 set to input connection A

= 1 set to input connection B

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per
digitizer, e.g. DP211). On the "normal" instruments with a single input per channel, this function
may be ignored.

Programmer’s Reference Manual Page 57 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configMultiInput(ViSession instrumentID,

ViInt32 channel, ViInt32 input);

LabVIEW Representation

AqDx Configure Multiplexer Input.vi

Visual Basic Representation

ConfigMultiInput (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal connection As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configMultiInput (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByVal connection As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configMultiInput(instrumentID, channel, input)

Programmer’s Reference Manual Page 58 of 159

2.3.25 AcqrsD1_configSetupArray
Purpose

Sets the configuration for an array of configuration values. It is useful for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
nbrSetupObj ViInt32 Number of setup objects in the array
setupData ViAddr Pointer to an array containing the setup objects

ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type and supply its
address as ‘setupData’.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

GateParameters

Name Type Description
GatePos ViInt32 Start position of the gate (must be multiple of 4)
GateLength ViInt32 Length of the gate (must be multiple of 4)

Discussion
The user has to take care to allocate sufficient memory for the setupData. nbrSetupObj should not be

higher than what the allocated setupData holds.

The SSR option allows up to 4095 gate definitions. The AP101/AP201 analyzers are limited to 64 gate
definitions.

Note: The driver contains a set of 4095(64) default AqGateParameters, defined as { {0,256} {256, 256}
{512, 256} {768, 256} ... }.

Programmer’s Reference Manual Page 59 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configSetupArray(ViSession instrumentID,

ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj,
ViAddr setupData);

LabVIEW Representation

AqDx Configure Setup Array.vi

Visual Basic Representation
ConfigSetupArray (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal setupType As Long, _
 ByVal nbrSetupObj As Long, _
 setupData As Any) As Long

Visual Basic .NET Representation

AcqrsD1_configSetupArray (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByVal setupType As Int32, _
 ByVal nbrSetupObj As Int32, _
 ByRef setupData As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configSetupArray(instrumentID, channel, setupType,

nbrSetupObj, setupData)

Programmer’s Reference Manual Page 60 of 159

2.3.26 AcqrsD1_configTrigClass

Purpose

Configures the trigger class control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
trigClass ViInt32 = 0 edge trigger

= 1 TV trigger (12-bit-FAMILY External only)
sourcePattern ViInt32 = 0x000n0001 for Channel 1,

= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (ASBus operation). See
discussion below.

validatePattern ViInt32 Currently ignored
HoldType ViInt32 Currently ignored
holdValue1 ViReal64 Currently ignored
holdValue2 ViReal64 Currently ignored

Return Value

Name Type Description
Status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

For more details on the trigger source pattern in ASBus-connected MultiInstruments, please refer
to the Programmer’s Guide section 3.15.2, Trigger Source Numbering with ASBus.

For configuring the TV trigger see AcqrsD1_configTrigTV.

Programmer’s Reference Manual Page 61 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigClass(ViSession instrumentID,

ViInt32 trigClass, ViInt32 sourcePattern,
ViInt32 validatePattern, ViInt32 holdType,
ViReal64 holdValue1, ViReal64 holdValue2);

LabVIEW Representation

AqDx Configure Trigger Class.vi

Visual Basic Representation

ConfigTrigClass (ByVal instrumentID As Long, _
 ByVal trigClass As Long, _
 ByVal sourcePattern As Long, _
 ByVal validatePattern As Long, _
 ByVal holdType As Long, _
 ByVal holdValue1 As Double, _
 ByVal holdValue2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigClass (ByVal instrumentID As Int32, _
 ByVal trigClass As Int32, _
 ByVal sourcePattern As Int32, _
 ByVal validatePattern As Int32, _
 ByVal holdType As Int32, _
 ByVal holdValue1 As Double, _
 ByVal holdValue2 As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configTrigClass(instrumentID, trigClass, sourcePattern,

validatePattern, holdType, holdValue1,
holdValue2)

Programmer’s Reference Manual Page 62 of 159

2.3.27 AcqrsD1_configTrigSource

Purpose

Configures the trigger source control parameters for the specified trigger source (channel or
External).

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal sources

= -1..-(Number of ExtTrigSources) for external sources
See discussion below.

trigCoupling ViInt32 = 0 DC
= 1 AC
= 2 HF Reject (if available)
= 3 DC, 50 Ω (ext. trigger only, if available)
= 4 AC, 50 Ω (ext. trigger only, if available)

trigSlope ViInt32 = 0 Positive
= 1 Negative
= 2 out of Window
= 3 into Window
= 4 HF divide
= 5 Spike Stretcher

trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

The allowed range for the trigger threshold depends on the model and the channel chosen. See
your product User Manual.

NOTE: Some of the possible states may be unavailable in some digitizers. In particular, the
trigCoupling choices of ‘DC, 50 Ω’ and ‘AC, 50 Ω’ are only needed for modules that have both
50 Ω and 1 MΩ external input impedance possibilities.

Programmer’s Reference Manual Page 63 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigSource(ViSession instrumentID,

ViInt32 channel, ViInt32 trigCoupling,
ViInt32 trigSlope, ViReal64 trigLevel1,
ViReal64 trigLevel2);

LabVIEW Representation

AqDx Configure Extended Trigger Source.vi

Visual Basic Representation

ConfigTrigSource (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 ByVal trigCoupling As Long, _
 ByVal trigSlope As Long, _
 ByVal trigLevel1 As Double, _
 ByVal trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigSource (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByVal trigCoupling As Int32, _
 ByVal trigSlope As Int32, _
 ByVal trigLevel1 As Double, _
 ByVal trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status]= Aq_configTrigSource(instrumentID, channel, trigCoupling,

trigSlope, trigLevel1, trigLevel2)

Programmer’s Reference Manual Page 64 of 159

2.3.28 AcqrsD1_configTrigTV

Purpose

Configures the TV trigger parameters (12-bit-FAMILY only).

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external sources

See discussion below.
standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)

= 2 525/60/2:1 (NTSC)
field ViInt32 = 1 Field 1 - odd

= 2 Field 2 - even
line ViInt32 = line number, depends on the parameters above:

For 'standard' = 625/50/2:1
= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The number of internal (i.e. channel) or external trigger sources of the instrument can be
retrieved with the AcqrsD1_getInstrumentInfo function.

Programmer’s Reference Manual Page 65 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configTrigTV (ViSession instrumentID,

ViInt32 channel, ViInt32 standard,
 ViInt32 field, ViInt32 line);

LabVIEW Representation

AqDx Configure Trigger TV.vi

Visual Basic Representation

ConfigTrigTV (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 ByVal standard As Long, _
 ByVal field As Long, _
 ByVal line AS Long) As Long

Visual Basic .NET Representation

AcqrsD1_configTrigTV (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByVal standard As Int32, _
 ByVal field As Int32, _
 ByVal line AS Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configTrigTV(instrumentID, channel, standard, field,

line)

Programmer’s Reference Manual Page 66 of 159

2.3.29 AcqrsD1_configVertical

Purpose

Configures the vertical control parameters for a specified channel of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input
fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 0 Ground (Averagers ONLY)

= 1 DC, 1 MΩ
= 2 AC, 1 MΩ
= 3 DC, 50 Ω
= 4 AC, 50 Ω

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For the DC440 and DP310 the coupling input is used to select the signal input: DC, 50 Ω for the
Standard input and AC, 50 Ω for the Direct HF input.

Some instruments have no bandwidth limiting capability. In this case, use bandwidth = 0. With
channel = -1 this function can be used to set the Full Scale Range and the bandwidth limit of the
external trigger for the DC271-FAMILY digitizers, the 10-bit-FAMILY, the AC/SC, and the
AP240/AP235 signal analyzer platforms. For the case of a 10-bit-FAMILY or DC271-FAMILY
MultiInstrument using ASBus, the external triggers of the additional modules are numbered –3, -
5, … following the principles given in the Programmer’s Guide section 3.15.2, Trigger Source
Numbering with ASBus.

Programmer’s Reference Manual Page 67 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_configVertical(ViSession instrumentID,

ViInt32 channel,ViReal64 fullScale,
ViReal64 offset, ViInt32 coupling,
ViInt32 bandwidth);

LabVIEW Representation

AqDx Configure Vertical Settings.vi

Visual Basic Representation

ConfigVertical (ByVal instrumentID As Long, ByVal Channel As Long, _
 ByVal fullScale As Double, ByVal offset As Double, _
 ByVal coupling As Long, _
 ByVal bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_configVertical (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByVal fullScale As Double, _
 ByVal offset As Double, _
 ByVal coupling As Int32, _
 ByVal bandwidth As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_configVertical(instrumentID, channel, fullScale, offset,

coupling, bandwidth)

Programmer’s Reference Manual Page 68 of 159

2.3.30 AcqrsD1_errorMessage

Purpose

Translates an error code into a human readable form. The new function
AcqrsD1_errorMessageEx is to be preferred.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated

Output
Name Type Description

errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion
 There is no Matlab MEX implementation of this function.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_errorMessage(ViSession instrumentID,

ViStatus errorCode, ViChar errorMessage[]);

LabVIEW Representation

AqDx Error Message.vi

Note: This vi already
implements the use of
AcqrsD1_errorMessageEx

Visual Basic Representation

errorMessage (ByVal instrumentID As Long, ByVal errorCode As Long, _
 ByVal errorMessage As String) As Long

Visual Basic .NET Representation

AcqrsD1_errorMessage (ByVal instrumentID As Int32, _
 ByVal errorCode As Int32, _
 ByVal errorMessage As String) As Int32

Programmer’s Reference Manual Page 69 of 159

2.3.31 AcqrsD1_errorMessageEx

Purpose

Translates an error code into a human readable form and returns associated information.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier can be VI_NULL
errorCode ViStatus Error code (returned by a function) to be translated
errorMessageSize ViInt32 Size of the errorMessage string in bytes

 (suggested size 512)

Output
Name Type Description

errorMessage ViChar [] Pointer to user-allocated string (suggested size 512)
into which the error-message text is returned

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function should be called immediately after the return of the error status to ensure that the
additional information remains available. For file errors, the returned message will contain the
file name and the original 'ansi' error string. This is particularly useful for calls to the following
functions:

AcqrsD1_calibrate AcqrsD1_calibrateEx

AcqrsD1_configLogicDevice AcqrsD1_configMode

AcqrsD1_init AcqrsD1_InitWithOptions

Programmer’s Reference Manual Page 70 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_errorMessageEx(ViSession instrumentID,

ViStatus errorCode, ViChar errorMessage[],
ViInt32 errorMessageSize);

LabVIEW Representation

AqDx Error Message.vi

 Note: This vi already
implements the use of
AcqrsD1_errorMessageEx

Visual Basic Representation

errorMessageEx (ByVal instrumentID As Long, ByVal errorCode As Long, _
 ByVal errorMessage As String,
 ByVal errorMessageSize As Long) As Long

Visual Basic .NET Representation

AcqrsD1_errorMessageEx (ByVal instrumentID As Int32, _
 ByVal errorCode As Int32, _
 ByVal errorMessage As String,
 ByVal errorMessageSize As Int32) As Int32

MATLAB MEX Representation

[status errorMessage]= Aq_errorMessageEx(instrumentID, errorCode)

Programmer’s Reference Manual Page 71 of 159

2.3.32 AcqrsD1_forceTrig

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after ordering the acquisition to stop. One must therefore wait
until the acquisition has terminated before reading the data, by checking the status with the
AcqrsD1_acqDone function. If the external clock is enabled, and there is no clock signal applied
to the device, AcqrsD1_acqDone will never return done = VI_TRUE. Consider using a timeout
and calling AcqrsD1_stopAcquisition if it occurs. In multisegment mode, the current segment is
acquired, the acquisition is terminated and the data and timestamps of subsequent segments are
invalid.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_forceTrig(ViSession instrumentID);

LabVIEW Representation

AqDx Software Trigger.vi

Visual Basic Representation

ForceTrig (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrig (ByVal instrumentID As Int32) As Int32

Programmer’s Reference Manual Page 72 of 159

2.3.33 AcqrsD1_forceTrigEx

Purpose

Forces a manual trigger. It should not be used for Averagers or Analyzers.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
forceTrigType ViInt32 = 0 Sends a software trigger to end the full acquisition

= 1 Sends a single software trigger and generates the
 TrigOut hardware signal

modifier ViInt32 Currently not used
flags ViInt32 Currently not used

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The function returns immediately after ordering the acquisition to stop. One must therefore wait
until the acquisition has terminated before reading the data, by checking the status with the
AcqrsD1_acqDone function. If the external clock is enabled, and there is no clock signal applied
to the device, AcqrsD1_acqDone will never return done = VI_TRUE. Consider using a timeout
and calling AcqrsD1_stopAcquisition if it occurs.

For forceTrigType = 0, the 'trigOut' Control IO will NOT generate a trigger output. This mode is
equivalent to AcqrsD1_forceTrig. In multisegment mode, the current segment is acquired, the
acquisition is terminated and the data and timestamps of subsequent segments are invalid.

For forceTrigType = 1, 'trigOut' Control IO will generate a trigger output on each successful call.
In multisegment mode, the acquisition advances to the next segment and then waits again for a
trigger. If no valid triggers are provided to the device, the application must call
AcqrsD1_forceTrigEx as many times as there are segments. Every acquired segment will be
valid. This mode is only supported for single (i.e. non-ASBus-connected) digitizers (not
Averagers or Analyzers).

Programmer’s Reference Manual Page 73 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_forceTrigEx(ViSession instrumentID ,
 ViInt32 forceTrigType, ViInt32 modifier, ViInt32 flags);

LabVIEW Representation

AqDx Software Trigger.vi

Visual Basic Representation

ForceTrigEx (ByVal instrumentID As Long, _
 ByVal forceTrigType as Long, _
 ByVal modifier As Long, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_forceTrigEx (ByVal instrumentID As Int32, _
 ByVal forceTrigType as Int32, _
 ByVal modifier As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status]= Aq_forceTrigEx(instrumentID, forceTrigType, modifier, flags)

Programmer’s Reference Manual Page 74 of 159

2.3.34 AcqrsD1_getAvgConfig

Purpose

Returns an attribute from the analyzer/averager configuration channelNbr.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channelNbr ViInt32 Channel number for use with AP240/AP235 dual-

channel mode. A value = 0 will be treated as =1 for
compatibility.

parameterString ViString Character string defining the requested parameter.
See AcqrsD1_configAvgConfig for the list of
accepted strings.

Output
Name Type Description

value ViAddr Requested information value.
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed under
AcqrsD1_configAvgConfig) and supply its address
as 'value'.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configAvgConfig.

Programmer’s Reference Manual Page 75 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getAvgConfig(ViSession instrumentID,

ViInt32 channelNbr, ViString parameterString,
ViAddr value);

LabVIEW Representation

AqDx Query Extended Averager Settings.vi
 This Vi returns the value as either I32 or DBL. Connect the
desired type.

Visual Basic Representation

GetAvgConfig (ByVal instrumentID As Long, _
 ByVal channelNbr As Long, _
 ByVal parameterString As String, _
 value as Any) As Long

Visual Basic .NET Representation

AcqrsD1_getAvgConfig (ByVal instrumentID As Int32, _
 ByVal channelNbr As Int32, _
 ByVal parameterString As String, _
 ByRef value as Int32) As Int32

or

AcqrsD1_getAvgConfig (ByVal instrumentID As Int32, _
 ByVal channelNbr As Int32, _
 ByVal parameterString As String, _
 ByRef value as Double) As Int32

MATLAB MEX Representation

[status value]= Aq_getAvgConfig(instrumentID, channel,

parameterString, dataTypeString)

Programmer’s Reference Manual Page 76 of 159

2.3.35 AcqrsD1_getChannelCombination

Purpose

Returns the current channel combination parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nbrConvertersPer
Channel

ViInt32 = 1 all channels use 1 converter each (default)
= 2 half of the channels use 2 converters each
= 4 1/4 of the channels use 4 converters each

usedChannels ViInt32 bit-field indicating which channels are used. See
discussion below

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configChannelCombination.

Programmer’s Reference Manual Page 77 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getChannelCombination(
 ViSession instrumentID,
 ViInt32* nbrConvertersPerChannel,
 ViInt32* usedChannels);

LabVIEW Representation

AqDx Query Channel Combination.vi

Visual Basic Representation

GetChannelCombination (ByVal instrumentID As Long, _
 nbrConvertersPerChannel As Long, _
 usedChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getChannelCombination (ByVal instrumentID As Int32, _
 ByRef nbrConvertersPerChannel As Int32, _
 ByRef usedChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrConvertersPerChannel usedChannels]=

Aq_getChannelCombination(instrumentID)

Programmer’s Reference Manual Page 78 of 159

2.3.36 AcqrsD1_getControlIO

Purpose

Returns the configuration of a ControlIO connector. (For DC271-FAMILY/10-bit-FAMILY/AP-
FAMILY/12-bit-FAMILY and AC/SC Analyzers only)

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
connector ViInt32 Connector Number

1 = Front Panel I/O A (MMCX connector)
2 = Front Panel I/O B (MMCX connector)
9 = Front Panel Trigger Out (MMCX connector)

Output
Name Type Description

signal ViInt32 Indicates the current use of the specified connector
0 = Disabled, 6 = Enable trigger etc.
For a detailed list, see the description of
AcqrsD1_configControlIO

qualifier1 ViInt32 The returned values depend on the type of connector,
see the discussion in AcqrsD1_configControlIO

qualifier2 ViReal64 The returned values depend on the module, see the
discussion in AcqrsD1_configControlIO

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

ControlIO connectors are front panel IO connectors for special purpose control functions of the
digitizer. Typical examples are user-controlled acquisition control (trigger enable) or control
output signals such as ’10 MHz reference’ or ‘trigger ready’.

The connector numbers are limited to 0 and the supported values. To find out which connectors
are supported by a given module, use this function with connector = 0:

 AcqrsD1_getControlIO(instrID, 0, &ctrlIOPattern, NULL, NULL);

In this case, the returned value of signal is the bit-coded list of the connectors that are available
in the digitizer. E.g. If the connectors 1 (I/O A), 2 (I/O B) and 9 (TrigOut) are present, the bits 1,
2 and 9 of signal are set, where bit 0 is the LSbit and 31 is the MSbit. Thus, the low order 16 bits
of signal (or ctrlIOPattern in the example above) would be equal to 0x206.

The DC271-FAMILY, 10-bit-FAMILY, AP-FAMILY, 12-bit-FAMILY, and AC/SC cards
support the connectors 1 (front panel I/O A MMCX coax), 2 (front panel I/O B MMCX coax)
and 9 (front panel Trig Out MMCX coax).

Programmer’s Reference Manual Page 79 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getControlIO(ViSession instrumentID,
 ViInt32 connector, ViInt32* signal,
 ViInt32* qualifier1, ViReal64* qualifier2);

LabVIEW Representation

AqDx Query Control IO Connectors.vi

Visual Basic Representation

GetControlIO (ByVal instrumentID As Long, _
 ByVal connector As Long, _
 signal As Long, _
 qualifier1 As Long, _
 qualifier2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getControlIO (ByVal instrumentID As Int32, _
 ByVal connector As Int32, _
 ByRef signal As Int32, _
 ByRef qualifier1 As Int32, _
 ByRef qualifier2 As Double) As Int32

MATLAB MEX Representation

[status signal qualifier1 qualifier2]= Aq_getControlIO(instrumentID,

connector)

Programmer’s Reference Manual Page 80 of 159

2.3.37 AcqrsD1_getExtClock

Purpose

Returns the current external clock control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

clockType ViInt32 = 0 Internal Clock (default at start-up)
= 1 External Clock, continuously running
= 2 External Reference (10 MHz)
= 4 External Clock, with start/stop sequence

inputThreshold ViReal64 Input threshold for external clock or reference in mV
delayNbrSamples ViInt32 Number of samples to acquire after trigger (for

'clockType' = 1 only!)
inputFrequency ViReal64 The presumed input frequency of the external clock,

for clockType = 4 only
sampFrequency ViReal64 The desired Sampling Frequency, for clockType = 4

only

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configExtClock.

Programmer’s Reference Manual Page 81 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getExtClock(ViSession instrumentID,

ViInt32* clockType, ViReal64* inputThreshold,
ViInt32* delayNbrSamples, ViReal64*
inputFrequency, ViReal64* sampFrequency);

LabVIEW Representation

AqDx Query External Clock.vi

Visual Basic Representation

GetExtClock (ByVal instrumentID As Long, _
 clockType As Long, _
 inputThreshold As Double, _
 delayNbrSamples As Long, _
 inputFrequency As Double, _
 sampFrequency As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getExtClock (ByVal instrumentID As Int32, _
 ByRef clockType As Int32, _
 ByRef inputThreshold As Double, _
 ByRef delayNbrSamples As Int32, _
 ByRef inputFrequency As Double, _
 ByRef sampFrequency As Double) As Int32

MATLAB MEX Representation

[status clockType inputThreshold delayNbrSamples inputFrequency

sampFrequency]= Aq_getExtClock(instrumentID)

Programmer’s Reference Manual Page 82 of 159

2.3.38 AcqrsD1_getFCounter

Purpose

Returns the current frequency counter configuration

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

signalChannel ViInt32 Signal input channel
type ViInt32 Type of measurement

= 0 Frequency (default)
= 1 Period (1/frequency)
= 2 Totalize by Time
= 3 Totalize by Gate

targetValue ViReal64 User-supplied estimate of the expected value
apertureTime ViReal64 Time in sec, during which the measurement is executed
reserved ViReal64 Currently ignored
flags ViInt32 Currently ignored

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 83 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getFCounter(ViSession instrumentID,
 ViInt32* signalChannel, ViInt32* type, ViReal64* targetValue,
 ViReal64* apertureTime, ViReal64* reserved, ViInt32* flags);

LabVIEW Representation

AqDx Query FCounter.vi

Visual Basic Representation

GetFCounter (ByVal instrumentID As Long, _
 signalChannel As Long, _
 type As Long, _
 targetValue As Double, _
 apertureTime As Double, _
 reserved As Double, _
 flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getFCounter (ByVal instrumentID As Int32, _
 ByRef signalChannel As Int32, _
 ByRef type As Int32, _
 ByRef targetValue As Double, _
 ByRef apertureTime As Double, _
 ByRef reserved As Double, _
 ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status signalChannel typeMes targetValue apertureTime reserved

flags]= Aq_getFCounter(instrumentID)

Programmer’s Reference Manual Page 84 of 159

2.3.39 AcqrsD1_getHorizontal

Purpose

Returns the current horizontal control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

sampInterval ViReal64 Sampling interval in seconds
delayTime ViReal64 Trigger delay time in seconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configHorizontal.

Programmer’s Reference Manual Page 85 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getHorizontal(ViSession instrumentID,

ViReal64* sampInterval, ViReal64* delayTime);

LabVIEW Representation

AqDx Query Horizontal Settings.vi

Visual Basic Representation

GetHorizontal (ByVal instrumentID As Long, _
 sampInterval As Double, _
 delayTime As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getHorizontal (ByVal instrumentID As Int32, _
 ByRef sampInterval As Double, _
 ByRef delayTime As Double) As Int32

MATLAB MEX Representation

[status sampInterval delayTime] = Aq_getHorizontal(instrumentID)

Programmer’s Reference Manual Page 86 of 159

2.3.40 AcqrsD1_getInstrumentData

Purpose

Returns some basic data about a specified digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

name ViChar [] Pointer to user-allocated string, into which the model
name is returned (length < 32 characters).

serialNbr ViInt32 Serial number of the digitizer.
busNbr ViInt32 Bus number of the digitizer location.
slotNbr ViInt32 Slot number of the digitizer location. (logical)

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 87 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getInstrumentData(ViSession instrumentID,

ViChar name[], ViInt32* serialNbr,
ViInt32* busNbr, ViInt32* slotNbr);

LabVIEW Representation

AqDx Query Instrument ID.vi

Visual Basic Representation

GetInstrumentData (ByVal instrumentID As Long, ByVal name As String, _
 serialNbr As Long, busNbr As Long, _
 slotNbr As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getInstrumentData (ByVal instrumentID As Int32, _
 ByVal name As String, _
 ByRef serialNbr As Int32, _
 ByRef busNbr As Int32, _
 ByRef slotNbr As Int32) As Int32

MATLAB MEX Representation

[status name serialNbr busNbr slotNbr]=

Aq_getInstrumentData(instrumentID)

Programmer’s Reference Manual Page 88 of 159

2.3.41 AcqrsD1_getInstrumentInfo

Purpose

Returns general information about a specified digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
parameterString ViString Character string defining the requested parameter. See

below for the list of accepted strings.

Output
Name Type Description

infoValue ViAddr Requested information value.
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate variable type (as listed below)
and supply its address as 'infoValue'.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Accepted Parameter Strings

Parameter String Returned
Type

Description

"ASBus_m_BusNb" ViInt32 Bus number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"ASBus_ m_IsMaster" ViInt32 Returns 1 if the m'th module of a multi-instrument is the
master, 0 otherwise. m runs from 0 to (nbr of modules –1).

"ASBus_ m_PosInCrate" ViInt32 Physical slot number (position) in cPCI crate of the m 'th
module of a multi-instrument. m runs from 0 to (nbr of
modules –1).

"ASBus_ m_SerialNb" ViInt32 Serial number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"ASBus_ m_SlotNb" ViInt32 Slot number of the m'th module of a multi-instrument. m
runs from 0 to (nbr of modules –1).

"CrateNb" ViInt32 Physical crate number (perhaps from AqGeo.map)
"DelayOffset" ViReal64 Calibrated Delay Offset

(only useful for recovery of battery backed-up acquisitions)
"DelayScale" ViReal64 Calibrated Delay Scale

(only useful for recovery of battery backed-up acquisitions)
"ExtCkRatio" ViReal64 Ratio of sFmax over external clock inputFrequency
"HasTrigVeto" ViInt32 Returns 1 if the functionality is available, 0 otherwise.
"IsPreTriggerRunning" ViInt32 Returns 1 if the module has an acquisition started but is not

yet ready to accept a trigger.
"LogDevDataLinks" ViInt32 Number of available data links for a streaming analyzer
"LOGDEVHDRBLOCKmDEVnS
string"

ViChar[] Returns information about FPGA firmware loaded. See
comments below.

"MaxSamplesPerChannel" ViInt32 Max. Number of samples per channel available in digitizer
mode

"NbrADCBits" ViInt32 Number of bits of data per sample from this modules ADCs
"NbrExternalTriggers" ViInt32 Number of external trigger sources
"NbrInternalTriggers" ViInt32 Number of internal trigger sources
"NbrModulesInInstrument" ViInt32 Number of modules in this instrument. Individual modules

Programmer’s Reference Manual Page 89 of 159

Parameter String Returned
Type

Description

(not connected through ASBus) return 1.
"Options" ViChar[] List of options, separated by ‘,’, installed in this instrument.
"OverloadStatus chan" ViInt32 Returns 1 if chan is in overload, 0 otherwise.

chan takes on the same values as 'channel' in
AcqrsD1_configTrigSource.

"OverloadStatus ALL" ViInt32 Returns 1 if any of the signal or external trigger inputs is in
overload, 0 otherwise.
Use the "OverloadStatus chan " string to determine which
channel is in overload.

"PosInCrate" ViInt32 Physical slot number (position) in cPCI crate
"SSRTimeStamp" ViReal64 Current value of time stamp for Analyzers in SSR mode.
"TbSegmentPad" ViInt32 Returns the additional array space (in samples) per segment

needed for the image read of AcqrsD1_readData,
AcqrsD1_readCharSequence or
AcqrsD1_readRealSequence (DEPRECATED).

"Temperature m" ViInt32 Temperature in degrees Centigrade (oC)
"TrigLevelRange chan" ViReal64 Trigger Level Range on channel chan
“VersionUserDriver” ViChar[] String containing the full driver version.

Discussion

For the case "TrigLevelRange chan" the result is to be interpreted as
± (returned value), which is in % of the vertical Full Scale of the channel, or in mV for an
external trigger source. The value of chan takes is the same as the values of 'channel' in
AcqrsD1_configTrigSource.

For the case "Temperature m", m is the module number in a MultiInstrument and runs from 0 to
(nbr of modules –1) following the channel order. It may be omitted on single digitizers or for the
master of a MultiInstrument

For the case "Options" the available options are returned in a ‘,’ separated string. The options
include the memory size if additional memory has been installed in the form "MnM" for
digitizers where n is the number of megabytes available or "PnMB" for AP235/AP240 and
"AnM" for AP100/AP101/AP200/AP201. Other possible options include "NoASBus",
"BtBkup", "FreqCntr", "SSR", "Avg", and "StrtOnTrig". The infoValue should point to a string
of at least 32 characters.

The case of "LOGDEVHDRBLOCKmDEVnS string" is one in which several possible values of
m, n, and string are allowed. The single digit number m refers to the FPGA block in the module.
For the moment this must always have the value 1. The single digit number n refers to the FPGA
device in the block. It can have values in the range 1,2,3,4 depending on the module. Among the
interesting values of string are the following case-sensitive strings: "name", "version",
"versionTxt", "compDate", "model".

The case of "SSRTimeStamp" should only be used when data is readable. In other words, it
should only be used between the moment at which the processing is done and the moment when
AcqrsD1_processData is called to enable the subsequent bank switch.

Examples

double trigLevelRange;
AcqrsD1_getInstrumentInfo(ID, "TrigLevelRange -1",

&trigLevelRange);

The acceptable trigger levels are in the range [-trigLevelRange, +trigLevelRange] mV (external trigger!).

For modules supporting switch on overload protection:

Programmer’s Reference Manual Page 90 of 159

long overLoad;
AcqrsD1_getInstrumentInfo(ID, "OverLoadStatus ALL", &overLoad);
if (overLoad)
 DO SOMETHING

In order to find out which channel(s) caused the overload, you have to loop over "OverLoadStatus
-1", "OverLoadStatus 1", "OverLoadStatus 2",...

Programmer’s Reference Manual Page 91 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getInstrumentInfo(ViSession instrumentID,

ViString parameterString, ViAddr infoValue);

LabVIEW Representation

AqDx Query Instrument Information.vi

NOTE: The type of the returned value depends on the parameter requested. In LabVIEW, the correct
returned type should be supplied as input to the VI, and the appropriate output wire connected. Any other
wire will always return zero.

Visual Basic Representation
NOTE: In Visual Basic, a returned type of ViInt32 should be declared as Long, while a returned type
of ViReal64 should be declared as Double.
GetInstrumentInfo (ByVal instrumentID As Long, _
 ByVal parameterString As String, _
 infoValue As Any) As Long

Visual Basic .NET Representation

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
 ByVal parameterString As String, _
 ByRef infoValue As Int32) As Int32
or

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
 ByVal parameterString As String, _
 ByRef infoValue As Double) As Int32
or

AcqrsD1_getInstrumentInfo (ByVal instrumentID As Int32, _
 ByVal parameterString As String, _
 ByVal infoValue As String) As Int32

MATLAB MEX Representation

[status infoValue] = Aq_getInstrumentInfo(instrumentID,

parameterString, dataTypeString)

Programmer’s Reference Manual Page 92 of 159

2.3.42 AcqrsD1_getMemory

Purpose

Returns the current memory control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nbrSamples ViInt32 Nominal number of samples to record (per segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to the

normal single-trace acquisition mode.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMemory.

Programmer’s Reference Manual Page 93 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMemory(ViSession instrumentID,

ViInt32* nbrSamples, ViInt32* nbrSegments);

LabVIEW Representation

AqDx Query Memory Settings.vi

Visual Basic Representation

GetMemory (ByVal instrumentID As Long, _
 nbrSamples As Long, _
 nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemory (ByVal instrumentID As Int32, _
 ByRef nbrSamples As Int32, _
 ByRef nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSamples nbrSegments] = Aq_getMemory(instrumentID)

Programmer’s Reference Manual Page 94 of 159

2.3.43 AcqrsD1_getMemoryEx

Purpose

Returns the current extended memory control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nbrSamplesHi ViUInt32 Will be set to 0 (reserved for future use)
nbrSamplesLo ViUInt32 Nominal number of samples to record (per segment!)
nbrSegments ViInt32 Number of segments to acquire. 1 corresponds to the

normal single-trace acquisition mode.
nbrBanks ViInt32 Will be set to 1 (reserved for future use)
flags ViInt32 = 0 default memory use

= 1 force use of internal memory (for 10-bit-FAMILY
 digitizers with extended memory options only).

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configMemoryEx.

Programmer’s Reference Manual Page 95 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMemoryEx(ViSession instrumentID,

ViUInt32* nbrSamplesHi, ViUInt32* nbrSamplesLo,
ViInt32* nbrSegments, ViInt32* nbrBanks,

 ViInt32* flags);

LabVIEW Representation

AqDx Query Extended Memory Settings.vi

Visual Basic Representation

GetMemoryEx (ByVal instrumentID As Long, _
 nbrSamplesHi As Long, _
 nbrSamplesLo As Long, _
 nbrSegments As Long, -
 nbrBanks As Long, -
 flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMemory (ByVal instrumentID As Int32, _
 ByRef nbrSamplesHi As UInt32, _
 ByRef nbrSamplesLo As UInt32, _
 ByRef nbrSegments As Int32, -
 ByRef nbrBanks As Int32, -
 ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status nbrSamplesHi nbrSamplesLo nbrSegments nbrBanks flags]=

Aq_getMemoryEx(instrumentID)

Programmer’s Reference Manual Page 96 of 159

2.3.44 AcqrsD1_getMode

Purpose

Returns the current operational mode of the digitizer

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

mode ViInt32 Operational mode
modifier ViInt32 Modifier, currently not used
flags ViInt32 Flags

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 97 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMode(ViSession instrumentID,
 ViInt32* mode, ViInt32* modifier, ViInt32* flags);

LabVIEW Representation

AqDx Query Operation Mode.vi

Visual Basic Representation

GetMode (ByVal instrumentID As Long, _
 mode as Long, _
 modifier As Long, _
 flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMode (ByVal instrumentID As Int32, _
 ByRef mode as Int32, _
 ByRef modifier As Int32, _
 ByRef flags As Int32) As Int32

MATLAB MEX Representation

[status mode modifiers flags] = Aq_getMode(instrumentID)

Programmer’s Reference Manual Page 98 of 159

2.3.45 AcqrsD1_getMultiInput

Purpose

Returns the multiple input configuration on a channel.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan

Output
Name Type Description

input ViInt32 = 0 input connection A
= 1 input connection B

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only of use for instruments with an input-multiplexer (i.e. more than 1 input per
digitizer, e.g. DP211). On the "normal" instruments with a single input per channel, this function
may be ignored.

Programmer’s Reference Manual Page 99 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getMultiInput(ViSession instrumentID,

ViInt32 channel, ViInt32* input);

LabVIEW Representation

AqDx Query Multiplexer Input.vi

Visual Basic Representation

GetMultiInput (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 inputs As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getMultiInput (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef input As Int32) As Int32

MATLAB MEX Representation

[status input] = Aq_getMultiInput(instrumentID, channel)

Programmer’s Reference Manual Page 100 of 159

2.3.46 AcqrsD1_getNbrChannels

Purpose

Returns the number of channels on the specified module.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nbrChannels ViInt32 Number of channels in the specified module

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getNbrChannels(ViSession instrumentID,

ViInt32* nbrChannels);

LabVIEW Representation

AqDx Query Number of Channels.vi

Visual Basic Representation

GetNbrChannels (ByVal instrumentID As Long, _
 nbrChannels As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getNbrChannels (ByVal instrumentID As Int32, _
 ByRef nbrChannels As Int32) As Int32

MATLAB MEX Representation

[status nbrChannels] = Aq_getNbrChannels(instrumentID)

Programmer’s Reference Manual Page 101 of 159

2.3.47 AcqrsD1_getNbrPhysicalInstruments

Purpose

Returns the number of physical Acqiris modules found on the computer.

Parameters

Output
Name Type Description

nbrInstruments ViInt32 Number of Acqiris modules found on the computer

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getNbrPhysicalInstruments(

ViInt32* nbrInstruments);

LabVIEW Representation

AqDx Query Number of Instruments.vi

Visual Basic Representation

GetNbrPhysicalInstruments (nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getNbrPhysicalInstruments (ByRef nbrInstruments As Int32 _
) As Int32

MATLAB MEX Representation

[status nbrInstrument]= Aq_getNbrPhysicalInstruments()

Programmer’s Reference Manual Page 102 of 159

2.3.48 AcqrsD1_getSetupArray
Purpose

Returns an array of configuration parameters. It is useful for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
setupType ViInt32 Type of setup.

0 = GateParameters
nbrSetupObj ViInt32 Maximum allowed number of setup objects in the

output.

Output
Name Type Description

setupData ViAddr Pointer to an array for the setup objects
ViAddr resolves to void* in C/C++. The user must
allocate the appropriate array and supply its address as
‘setupData’

nbrSetupObj-
Returned

ViInt32 Number of setup objects returned

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

AqGateParameters

Name Type Description
GatePos ViInt32 Start position of the gate
GateLength ViInt32 Length of the gate

Discussion

For the object definition refer to AcqrsD1_configSetupArray. If AcqrsD1_getSetupArray is
called without having set the Parameters before, the default values will be returned.

Note: The driver contains a set of 64 default AqGateParameters, defined as { {0,256} {256,
256} {512, 256} {768, 256} ... }.

Programmer’s Reference Manual Page 103 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getSetupArray(ViSession instrumentID,

ViInt32 channel,
ViInt32 setupType, ViInt32 nbrSetupObj
ViAddr setupData, ViInt32* nbrSetupObjReturned);

LabVIEW Representation

AqDx Query Setup Array.vi

Visual Basic Representation
GetSetupArray (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal setupType As Long, _
 ByVal nbrSetupObj As Long, _
 setupData As Any, _
 nbrSetupObjReturned As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getSetupArray (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByVal setupType As Int32, _
 ByVal nbrSetupObj As Int32, _
 ByRef setupData As Int32, _
 ByRef nbrSetupObjReturned As Int32) As Int32

MATLAB MEX Representation

[status setupData nbrSetupObjReturned] =

Aq_getSetupArray(instrumentID, channel,
setupType, nbrSetupObj)

Programmer’s Reference Manual Page 104 of 159

2.3.49 AcqrsD1_getTrigClass

Purpose

Returns the current trigger class control parameters of the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

trigClass ViInt32 = 0 edge trigger
= 1 TV trigger

sourcePattern ViInt32 = 0x000n0001 for Channel 1,
= 0x000n0002 for Channel 2,
= 0x000n0004 for Channel 3,
= 0x000n0008 for Channel 4 etc.
= 0x800n0000 for External Trigger 1,
= 0x400n0000 for External Trigger 2 etc.
where n is 0 for single instruments, or the module
number for MultiInstruments (ASBus operation). See
discussion below.

validatePattern ViInt32 Currently returns "0"
holdType ViInt32 Currently returns "0"
holdValue1 ViReal64 Currently returns "0"
holdValue2 ViReal64 Currently returns "0"

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configTrigClass.

Programmer’s Reference Manual Page 105 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigClass(ViSession instrumentID,

ViInt32* trigClass, ViInt32* sourcePattern,
ViInt32* validatePattern, ViInt32* holdType,
ViReal64* holdValue1, ViReal64* holdValue2);

LabVIEW Representation

AqDx Query Trigger Class.vi

Visual Basic Representation

GetTrigClass (ByVal instrumentID As Long, _
 trigClass As Long, _
 sourcePattern As Long, _
 validatePattern As Long, _
 holdType As Long, _
 holdValue1 As Double, _
 holdValue2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigClass (ByVal instrumentID As Int32, _
 ByRef trigClass As Int32, _
 ByRef sourcePattern As Int32, _
 ByRef validatePattern As Int32, _
 ByRef holdType As Int32, _
 ByRef holdValue1 As Double, _
 ByRef holdValue2 As Double) As Int32

MATLAB MEX Representation

[status trigClass sourcePattern validatePattern holdType holdValue1

holdValue2] = Aq_getTrigClass(instrumentID)

Programmer’s Reference Manual Page 106 of 159

2.3.50 AcqrsD1_getTrigSource

Purpose

Returns the current trigger source control parameters for a specified channel.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = 1...(Number of IntTrigSources) for internal sources

= -1..-(Number of ExtTrigSources) for external sources
See discussion below.

Output
Name Type Description

trigCoupling ViInt32 = 0 DC
= 1 AC
= 2 HF Reject
= 3 DC, 50 Ω
= 4 AC, 50 Ω

trigSlope ViInt32 = 0 Positive
= 1 Negative
= 2 out of Window
= 3 into Window
= 4 HF divide
= 5 Spike Stretcher

trigLevel1 ViReal64 Trigger threshold in % of the vertical Full Scale of the
channel, or in mV if using an External trigger source.
See discussion below.

trigLevel2 ViReal64 Trigger threshold 2 (as above) for use when Window
trigger is selected

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configTrigSource.

Programmer’s Reference Manual Page 107 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigSource(ViSession instrumentID,

ViInt32 channel, ViInt32* trigCoupling,
ViInt32* trigSlope, ViReal64* trigLevel1,
ViReal64* trigLevel2);

LabVIEW Representation

AqDx Query Extended Trigger Source.vi

Visual Basic Representation

GetTrigSource (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 trigCoupling As Long, _
 trigSlope As Long, _
 trigLevel1 As Double, _
 trigLevel2 As Double) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigSource (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef trigCoupling As Int32, _
 ByRef trigSlope As Int32, _
 ByRef trigLevel1 As Double, _
 ByRef trigLevel2 As Double) As Int32

MATLAB MEX Representation

[status trigCoupling trigSlope trigLevel1 trigLevel2] =

Aq_getTrigSource(instrumentID, channel)

Programmer’s Reference Manual Page 108 of 159

2.3.51 AcqrsD1_getTrigTV

Purpose

Returns the current TV trigger parameters (12-bit-FAMILY only).

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 = -1..-(Number of ExtTrigSources) for external sources

See discussion below.

Output

Name Type Description
standard ViInt32 = 0 625/50/2:1 (PAL or SECAM)

= 2 525/60/2:1 (NTSC)
field ViInt32 = 1 Field 1 - odd

= 2 Field 2 - even
line ViInt32 = line number, depends on the parameters above:

For 'standard' = 625/50/2:1
= 1 to 313 for 'field' = 1
= 314 to 625 for 'field' = 2
For 'standard' = 525/60/2:1
= 1 to 263 for 'field' = 1
= 1 to 262 for 'field' = 2

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See discussion under AcqrsD1_configTrigTV.

Programmer’s Reference Manual Page 109 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getTrigTV (ViSession instrumentID, ViInt32

channel, ViInt32* standard,
 ViInt32* field, ViInt32* line);

LabVIEW Representation

AqDx Query Trigger TV.vi

Visual Basic Representation

GetTrigTV (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 standard As Long, _
 field As Long, _
 line AS Long) As Long

Visual Basic .NET Representation

AcqrsD1_getTrigTV (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef standard As Int32, _
 ByRef field As Int32, _
 ByRef line AS Int32) As Int32

MATLAB MEX Representation

[status standard field line] = Aq_getTrigTV(instrumentID, channel)

Programmer’s Reference Manual Page 110 of 159

2.3.52 AcqrsD1_getVersion

Purpose

Returns version numbers associated with a specified digitizer or current device driver.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
versionItem ViInt32 1 for version of Kernel-Mode Driver

2 for version of EEPROM Common Section
3 for version of EEPROM Digitizer Section
4 for version of CPLD firmware

Output
Name Type Description

version ViInt32 version number of the requested item

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

For drivers, the version number is composed of 2 parts. The upper 2 bytes represent the major
version number, and the lower 2 bytes represent the minor version number.

Programmer’s Reference Manual Page 111 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getVersion(ViSession instrumentID,

ViInt32 versionItem, ViInt32* version);

LabVIEW Representation

AqDx Revision Query.vi

Visual Basic Representation

GetVersion (ByVal instrumentID As Long, _
 ByVal versionItem As Long, version As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVersion (ByVal instrumentID As Int32, _
 ByVal versionItem As Int32, ByRef version As Int32) As Int32

MATLAB MEX Representation

[status version] = Aq_getVersion(instrumentID, versionItem)

Programmer’s Reference Manual Page 112 of 159

2.3.53 AcqrsD1_getVertical

Purpose

Returns the vertical control parameters for a specified channel in the digitizer.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan, or –1,… for the External Input

Output
Name Type Description

fullScale ViReal64 in Volts
offset ViReal64 in Volts
coupling ViInt32 = 1 DC, 1 MΩ

= 2 AC, 1 MΩ
= 3 DC, 50 Ω
= 4 AC, 50 Ω

bandwidth ViInt32 = 0 no bandwidth limit (default)
= 1 bandwidth limit at 25 MHz
= 2 bandwidth limit at 700 MHz
= 3 bandwidth limit at 200 MHz
= 4 bandwidth limit at 20 MHz
= 5 bandwidth limit at 35 MHz

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_configVertical.

Programmer’s Reference Manual Page 113 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_getVertical(ViSession instrumentID,

ViInt32 channel, ViReal64* fullScale,
ViReal64* offset, ViInt32* coupling,
ViInt32* bandwidth);

LabVIEW Representation

AqDx Query Vertical Settings.vi

Visual Basic Representation

GetVertical (ByVal instrumentID As Long, _
 ByVal Channel As Long, _
 fullScale As Double, _
 offset As Double, _
 coupling As Long, _
 bandwidth As Long) As Long

Visual Basic .NET Representation

AcqrsD1_getVertical (ByVal instrumentID As Int32, _
 ByVal Channel As Int32, _
 ByRef fullScale As Double, _
 ByRef offset As Double, _
 ByRef coupling As Int32, _
 ByRef bandwidth As Int32) As Int32

MATLAB MEX Representation

[status fullScale offset coupling bandwidth] =

Aq_getVertical(instrumentID, channel)

Programmer’s Reference Manual Page 114 of 159

2.3.54 AcqrsD1_init

Purpose

Initializes an instrument.

Parameters

Input
Name Type Description

resourceName ViRsrc ASCII string which identifies the digitizer to be
initialized. See discussion below.

IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the digitizer after initialization.

Output
Name Type Description

InstrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization, for a detailed
explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID when the
initialization string could not be interpreted.

Programmer’s Reference Manual Page 115 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_init(ViRsrc resourceName, ViBoolean IDQuery,

ViBoolean resetDevice, ViSession* instrumentID);

LabVIEW Representation

AqDx Initialize.vi

Visual Basic Representation

Init (ByVal resourceName As String, ByVal IDQuery As Boolean, _
 ByVal resetDevice As Boolean, instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_init (ByVal resourceName As String, ByVal IDQuery As Boolean,_
 ByVal resetDevice As Boolean, ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID] = Aq_init(instrumentID, IDQuery, resetDevice)

Programmer’s Reference Manual Page 116 of 159

2.3.55 AcqrsD1_InitWithOptions

Purpose

Initializes an instrument with options.

Parameters

Input
Name Type Description

resourceName ViRsrc ASCII string which identifies the digitizer to be
initialized. See discussion below.

IDQuery ViBoolean Currently ignored
resetDevice ViBoolean If set to 'TRUE', resets the digitizer after initialization.
optionsString ViString ASCII string that specifies options.

Syntax: "optionName=bool" where bool is TRUE (1)
or FALSE (0).
Currently three options are supported:
”CAL”: do calibration at initialization (default 1)
"DMA": use scatter-gather DMA for data transfers
(default 1).
"simulate": initialize a simulated device (default 0).
NOTE: optionsString is case insensitive.

Output
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to the Programmer’s Guide section 3.2, Device Initialization for a detailed
explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_INIT_STRING_INVALID when the
initialization string could not be interpreted.

When setting the option simulate to 1 (TRUE), the function AcqrsD1_setSimulationOptions
should be called first with the appropriate options.

Multiple options can be given; Separate the option=value pairs with ‘,’ characters.

Programmer’s Reference Manual Page 117 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_InitWithOptions(ViRsrc resourceName,

ViBoolean IDQuery, ViBoolean resetDevice,
ViString optionsString, ViSession* instrumentID);

LabVIEW Representation

AqDx Initialize with Options.vi

Visual Basic Representation

InitWithOptions (ByVal resourceName As String, _
 ByVal IDQuery As Boolean, _
 ByVal resetDevice As Boolean, _
 ByVal optionsString As String, _
 instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_InitWithOptions (ByVal resourceName As String, _
 ByVal IDQuery As Boolean, _
 ByVal resetDevice As Boolean, _
 ByVal optionsString As String, _
 ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID]= Aq_initWithOptions(resourceName, IDQuery,

resetDevice, optionsString)

Programmer’s Reference Manual Page 118 of 159

2.3.56 AcqrsD1_logicDeviceIO

Purpose

Reads/writes a number of 32-bit data values from/to a user-defined register in on-board logic
devices, such as user-programmable FPGAs. It is useful for AC/SC Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
deviceName ViChar [] Identifies which device to read from or write to.

In the AC210/240 and the SC210/240, this string must
be “Block1Dev1”

registerID ViInt32 Register Number, can typically assume 0 to 127
nbrValues ViInt32 Number of data values to read
dataArray ViInt32 [] User-supplied array of data values
readWrite ViInt32 Direction 0 = read from device, 1 = write to device
flags ViInt32 Currently unused, set to “0”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is only useful if the user programmed the on-board logic device (FPGA).

Typically, nbrValues is set to 1, but it may be larger if the logic device supports internal address
auto-incrementation. The following example reads the (32-bit) contents of register 5 to
reg5Value:

ViStatus status =
 AcqrsD1_logicDeviceIO(ID, "Block1Dev1", 5, 1, ®5Value, 0, 0);

Note that dataArray must always be supplied as an address, even when writing a single value.

Programmer’s Reference Manual Page 119 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_logicDeviceIO(ViSession instrumentID,
 ViChar deviceName[], ViInt32 registerID,

ViInt32 nbrValues, ViInt32 dataArray[],
ViInt32 readWrite, ViInt32 flags);

LabVIEW Representation

AqDx Logic Device IO.vi

Visual Basic Representation

LogicDeviceIO (ByVal instrumentID As Long, _
 ByVal deviceName As String, _
 ByVal registerID As Long, _
 ByVal nbrValues As Long, _
 dataArray As Long, _
 ByVal readWrite As Long, _
 ByVal modifier As Long) As Long

Visual Basic .NET Representation

AcqrsD1_logicDeviceIO (ByVal instrumentID As Int32, _
 ByVal deviceName As String, _
 ByVal registerID As Int32, _
 ByVal nbrValues As Int32, _
 ByRef dataArray As Int32, _
 ByVal readWrite As Int32, _
 ByVal modifier As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_logicDeviceIO(instrumentID, deviceName, registerID,

nbrValues, dataArray, readWrite, modifier)

Programmer’s Reference Manual Page 120 of 159

2.3.57 AcqrsD1_multiInstrAutoDefine

Purpose

Automatically initializes all digitizers and combines as many as possible to MultiInstruments.
Digitizers are only combined if they are physically connected via ASBus.

Parameters

Input
Name Type Description

optionsString ViString ASCII string which specifies options.
Currently no options are supported.

Output
Name Type Description

nbrInstruments ViInt32 Number of user-accessible instruments. It also includes
single instruments that don't participate on the ASBus.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This call must be followed by nbrInstruments calls to the functions AcqrsD1_init or
AcqrsD1_InitWithOptions to retrieve the instrumentID of the (multi)digitizers.

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

Programmer’s Reference Manual Page 121 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrAutoDefine(ViString optionsString,

ViInt32* nbrInstruments);

LabVIEW Representation

AqDx MultiInstrument Auto Define.vi

Visual Basic Representation
MultiInstrAutoDefine (ByVal optionsString As String, _
 nbrInstruments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrAutoDefine (ByVal optionsString As String, _
 ByRef nbrInstruments As Int32) As Int32

MATLAB MEX Representation

[status nbrInstruments] = Aq_multiInstrAutoDefine(optionsString)

Programmer’s Reference Manual Page 122 of 159

2.3.58 AcqrsD1_multiInstrDefine

Purpose

This function defines the combination of a number of digitizers connected by ASBus into a
single MultiInstrument. It is not applicable to ASBus2 modules.

Parameters

Input
Name Type Description

instrumentList ViSession [] Array of 'instrumentID' of already initialized single
digitizers

nbrInstruments ViInt32 Number of digitizers in the 'instrumentList'
masterID ViSession 'instrumentID' of master digitizer

Output
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

The function returns the error code ACQIRIS_ERROR_MODULES_NOT_ON_SAME_BUS if
all modules in the instrumentList are not on the same bus.

It may also return the error codes ACQIRIS_ERROR_NOT_ENOUGH_DEVICES or
ACQIRIS_ERROR_NO_MASTER_DEVICE, when nbrInstruments is < 2 or the masterID is
not one of the values in the instrumentList.

This function should only be used if the choices of the automatic initialization function
AcqrsD1_multiInstrAutoDefine must be overridden. If the function executes successfully, the
instrumentID presented in the instrumentList cannot be used anymore, since they represent
individual digitizers that have become part of the new MultiInstrument, identified with newly
returned instrumentID. Please refer to the Programmer’s Guide section 3.2.7, Manual
Definition of MultiInstruments for more information.

Programmer’s Reference Manual Page 123 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrDefine(ViSession instrumentList[],

ViInt32 nbrInstruments, ViSession masterID,
ViSession* instrumentID);

LabView Representation

AqDx Configure MultiInstrument Manual Define.vi

Visual Basic Representation

MultiInstrDefine (ByRef instrumentList As Long, _
 ByVal nbrInstruments As Long, _
 ByVal masterID As Long, _
 instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrDefine (ByRef instrumentList As Int32, _
 ByVal nbrInstruments As Int32, _
 ByVal masterID As Int32, _
 ByRef instrumentID As Int32) As Int32

MATLAB MEX Representation

[status instrumentID] = Aq_multiInstrDefine(instrumentList,

nbrInstruments, masterID)

Programmer’s Reference Manual Page 124 of 159

2.3.59 AcqrsD1_multiInstrUndefineAll

Purpose

Undefines all MultiInstruments.

Parameters

Input
Name Type Description

optionsString ViString ASCII string which specifies options.
Currently no options are supported.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

You should refer to to the Programmer’s Guide section 3.2, Device Initialization, for a
detailed explanation on the initialization procedure.

This function is almost never needed, except if you want to dynamically redefine
MultiInstruments with the aid of the function AcqrsD1_multiInstrDefine. If the function
executes successfully, the instrumentID of the previously defined MultiInstruments cannot be
used anymore. You must either have remembered the instrumentID of the single instruments
that made up the MultiInstruments, or you must reestablish all instrumentID of all digitizers by
reinitializing with the code shown in the Programmer’s Guide section 3.2.1, Identification by
Order Found.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_multiInstrUndefineAll(ViString

optionsString);

LabVIEW Representation

AqDx Configure MultiInstrument Undefine.vi

Visual Basic Representation

MultiInstrUndefineAll (ByVal optionsString As String) As Long

Visual Basic .NET Representation

AcqrsD1_multiInstrUndefineAll (ByVal optionsString As String) As Long

MATLAB MEX Representation

[status] = Aq_multiInstrUndefineAll(optionsString)

Programmer’s Reference Manual Page 125 of 159

2.3.60 AcqrsD1_procDone

Purpose

Checks if the on-board data processing has terminated. This routine is for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

done ViBoolean done = VI_TRUE if the processing is terminated
 VI_FALSE otherwise

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_procDone(ViSession instrumentID,

ViBoolean* done);

LabVIEW Representation

AqDx Query Process Done.vi

Visual Basic Representation

ProcDone (ByVal instrumentID As Long, done As Boolean) As Long

Visual Basic .NET Representation

AcqrsD1_procDone (ByVal instrumentID As Int32, _
 ByRef done As Boolean) As Int32

MATLAB MEX Representation

[status done] = Aq_procDone(instrumentID)

Programmer’s Reference Manual Page 126 of 159

2.3.61 AcqrsD1_processData

Purpose

Starts on-board data processing on acquired data in the current bank as soon as the current
acquisition terminates. It can also be used to allow the following acquisition to be started as soon
as possible. This routine is for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
processType ViInt32 Type of processing

0 = no processing (or other Analyzers)
 and for AP101/AP201 ONLY
1 = gated peak detection, extrema mode
2 = gated peak detection, hysteresis mode
3 = interpolated peaks, extrema mode
4 = interpolated peaks, hysteresis mode
 And for AdvTDC Analyzers
0 = respect the settings done with
 AcqrsD1_configAvgConfig
1 = gated peak detection with hystersis
2 = gated and interpolated peak detection with
 hysteresis
3 = gated peak detection with 8-point peak region
4 = gated peak detection with 16-point peak region

flags ViInt32 Autoswitch functionality
0 = do (re-)processing in same bank
1 = start the next acquisition in the other bank
2 = switch banks but do not start next acquisition

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 127 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_processData(ViSession instrumentID,

ViInt32 processType, ViInt32 flags);

LabVIEW Representation

AqDx Process Data.vi

Visual Basic Representation

ProcessData (ByVal instrumentID As Long, _
 ByVal processType As Long, _
 ByVal flags As Long) As Long

Visual Basic .NET Representation

AcqrsD1_processData (ByVal instrumentID As Int32, _
 ByVal processType As Int32, _
 ByVal flags As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_processData(instrumentID, processType, flags)

Programmer’s Reference Manual Page 128 of 159

2.3.62 AcqrsD1_readCharSequence (DEPRECATED)

Purpose

Returns a sequence of waveforms as a byte array.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
firstSegment ViInt32 Requested first segment number, may assume 0 to the

(number of segments – 1).
nbrSegments ViInt32 Requested number of segments, may assume 1 to the

number of segments set with the function
AcqrsD1_configMemory.

firstSampleInSeg ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1), as set
with the function AcqrsD1_configMemory.

nbrSamplesInSeg ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

segmentOffset ViInt32 Requested offset, in number of samples, between
adjacent segments in the destination buffer
waveformArray. Must be ≥ nbrSamplesInSeg.

arraySize ViInt32 Number of data elements in the user-allocated
waveformArray. Used for verification / protection.

Output
Name Type Description

waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. See discussion below for the required size.

horPos ViReal64 [] User-allocated array for horizontal positions of first
data point, one per segment. See discussion below.

sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
timeStampLo
timeStampHi

ViInt32 []
ViInt32 []

User-allocated arrays for low and high parts of the 64-
bit trigger timestamp. See discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function is faster than a loop over AcqrsD1_readCharWform, if many short segments
(< 10'000 samples/segment) are read. See the Programmer’s Guide, Appendix A: Estimating
Data Transfer Times for timing details.

The waveform destination array waveformArray must not only allocate enough space to hold
the requested data, but also some additional space. This function achieves a higher transfer speed
by simply transferring an image of the digitizer memory to the CPU memory, and then
reordering all circular segment buffers into linear arrays. Since allocating a temporary buffer for
the memory image is time consuming, the user-allocated destination buffer is also used as a
temporary storage for the memory image. The rule for the minimum storage space to allocate

Programmer’s Reference Manual Page 129 of 159

with waveformArray is discussed in to the Programmer’s Guide section 3.9.2, Reading
Sequences of Waveforms.

The value of segmentOffset must be ≥ nbrSamplesInSeg. The waveforms are thus transferred
sequentially into a single linear buffer, with 'holes' of length (segmentOffset – nbrSamplesInSeg)
between them. Such 'holes' could be used for depositing additional segment-specific information
before storing the entire sequence as a single array to disk. If you specify firstSegment > 0, you
don’t have to allocate any buffer space for waveforms that are not read, i.e. waveformArray[0]
corresponds to the first sample of the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesInSeg = segmentOffset = 1500. Then with
nbrSegments = 80 and nbrSamplesNom = 1000, since the currentSegmentPad = 408, you would
have to allocate at least 1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently rather than
dynamically, in order to avoid system overheads for buffer allocation/deallocation.

The arrays horPos, timeStampLo and timeStampHi must always be allocated with length that
corresponds to the total number of segments requested with the function
AcqrsD1_configMemory. The timestamp of the first requested segment is therefore deposited in
timeStampLo[firstSegment], which is not necessarily timeStampLo[0].

The returned parameters horPos[] are the horizontal positions, for each segment, of the first
(nominal) data point with respect to the origin of the nominal trigger delay in seconds. Since the
first data point is BEFORE the origin, this number will be in the range [-sampTime, 0]. Refer to
the Programmer’s Guide section 3.10, Trigger Delay and Horizontal Waveform Position,
for a detailed discussion of the value delayTime.

The returned parameters timeStampLo[] and timeStampHi[] are respectively the low and high
parts of the 64-bit trigger timestamp, on per segment, in units of picoseconds. The timestamp is
the trigger time with respect to an arbitrary time origin (typically the start-time of the
acquisition), which is intended for the computation of time differences between segments of a
Sequence acquisition. Please refer to the Programmer’s Guide section 3.13, Timestamps, for a
detailed explanation.

The value in Volts of a data point data in the returned waveformArray can be computed with
the formula:

V = vGain * data - vOffset

Programmer’s Reference Manual Page 130 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readCharSequence(ViSession instrumentID,

ViInt32 channel, ViInt32 firstSegment,
ViInt32 nbrSegments, ViInt32 firstSampleInSeg,
ViInt32 nbrSamplesInSeg, ViInt32 segmentOffset,
ViInt32 arraySize, ViChar waveformArray[],
ViReal64 horPos[], ViReal64* sampTime,
ViReal64* vGain, ViReal64* vOffset,
ViInt32 timeStampLo[],ViInt32 timeStampHi[]);

LabVIEW Representation

AqDx Read Sequence in ADC.vi should be considered as obsolete.
Please use AqDx Read Digitizer Data.vi instead

Visual Basic Representation

ReadCharSequence (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal firstSegment As Long, _
 ByVal nbrSegments As Long, _
 ByVal firstSampleInSeg As Long, _
 ByVal nbrSamplesInSeg As Long, _
 ByVal segmentOffset As Long, _
 ByVal arraySize As Long, _
 waveformArray As Byte, _
 horPos As Double, _
 sampTime As Double, _
 vGain As Double, _
 vOffset As Double, _
 timeStampLo As Long, _
 timeStampHi As Long) As Long

Programmer’s Reference Manual Page 131 of 159

2.3.63 AcqrsD1_readCharWform (DEPRECATED)

Purpose

Returns a waveform as a byte array.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
segmentNumber ViInt32 Requested segment number, may assume 0 to the

(number of segments – 1) set with the function
AcqrsD1_configMemory.

firstSample ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1) set with
the function AcqrsD1_configMemory.

nbrSamples ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

Output
Name Type Description

waveformArray ViChar [] User-allocated waveform destination array of type char
or byte. Its size MUST be at least (nbrSamples + 32),
for reasons of data alignment.

returnedSamples ViInt32 Number of data samples actually returned
addrFirstPoint ViInt32 Offset of the first valid data point, that of the first

sample, in the destination array. It should always be in
the range [0...31].

horPos ViReal64 Horizontal position of first data point. See discussion
below.

sampTime ViReal64 Sampling interval in seconds
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
timeStampLo
timeStampHi

ViInt32
ViInt32

Low and high part of the 64-bit trigger timestamp. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The returned parameter horPos is the horizontal position of the first (nominal) data point with
respect to the origin of the nominal trigger delay in seconds. Since the first data point is
BEFORE the origin, this number will be in the range [-sampTime, 0]. Refer to the
Programmer’s Guide section 3.10, Trigger Delay and Horizontal Waveform Position for a
detailed discussion of the value delayTime.

The returned parameters timeStampLo and timeStampHi are respectively the low and high
parts of the 64-bit trigger timestamp, in units of picoseconds. The timestamp is the trigger time
with respect to an arbitrary time origin (typically the start-time of the acquisition), which is
intended for the computation of time differences between segments of a Sequence acquisition.
Please refer to the Programmer’s Guide section 3.13, Timestamps, for a detailed explanation.

Programmer’s Reference Manual Page 132 of 159

The value in Volts of a data point data in the returned waveformArray can be computed with
the formula:

V = vGain * data - vOffset

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readCharWform(ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViChar waveformArray[], ViInt32* returnedSamples,
ViInt32* addrFirstPoint, ViReal64* horPos,
ViReal64* sampTime, ViReal64* vGain,
ViReal64* vOffset, ViInt32* timeStampLo,
ViInt32* timeStampHi);

LabVIEW Representation

AqDx Read Waveform in ADC.vi should be considered as obsolete.
Please use AqDx Read RAW Data.vi instead

Visual Basic Representation

ReadCharWform (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal segmentNumber As Long, _
 ByVal firstSample As Long, _
 ByVal nbrSamples As Long, _
 waveformArray As Byte, _
 returnedSamples As Long, _
 addrFirstPoint As Long, _
 horPos As Double, _
 sampTime As Double, _
 vGain As Double, vOffset As Double, _
 timeStampLo As Long, timeStampHi As Long) As Long

Programmer’s Reference Manual Page 133 of 159

2.3.64 AcqrsD1_readData

Purpose

Returns all waveform information. The sample data is returned in an array whose type is
specified in the AqReadParameters structure.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
readPar AqReadParameters Requested parameters for the acquired waveform.

Output
Name Type Description

dataArray ViAddr User-allocated waveform destination array.
The array size restrictions are given below.
ViAddr resolves to void* in C/C++.

dataDesc AqDataDescriptor Waveform descriptor structure, containing waveform
information that is common to all segments.

segDescArray ViAddr Segment descriptor structure array, containing data that
is specific for each segment. The size of the array is
defined by nbrSegments and the type by readMode.If
readMode =4 there are no segment descriptors.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Read Parameters in AqReadParameters

Name Type Description
dataType ViInt32 Type representation of the waveform

0 = 8-bit (char) = 1 byte
1 = 16-bit (short) = 2 bytes
2 = 32-bit (long) = 4 bytes
3 = 64-bit (double) = 8 bytes

readMode ViInt32 readout mode of the digitizer
0 = standard waveform (single segment only)
1 = image read for sequence waveform
2 = averaged waveform (from an Averager ONLY)
3 = gated waveform (from an AP101/AP201 ONLY)
4 = peaks (from an AP101/AP201 or AdvancedTDC)
5 = short averaged waveform (from an Averager)
6 = shifted short averaged waveform (from an
 Averager)
7 = SSR or AdvTDCwaveform from an Analyzer
9 = AdvancedTDC Histogram readout from an
 Analyzer
10 = AdvancedTDC Peak region readout from an
 Analyzer

firstSegment ViInt32 Requested first segment number, may assume 0 to the
(number of segments – 1).

nbrSegments ViInt32 Requested number of segments, may assume 1 to the
actual number of segments.

firstSampleInSeg ViInt32 Requested position of first sample to read, typically 0.

Programmer’s Reference Manual Page 134 of 159

May assume 0 to the actual (number of samples – 1).
nbrSamplesInSeg ViInt32 Requested number of samples, may assume 1 to the

actual number of samples.
segmentOffset ViInt32 ONLY used for readMode = 1 in DIGITIZERS:

Requested offset, in number of samples, between
adjacent segments in the destination buffer dataArray.
Must be ≥ nbrSamplesInSeg

dataArraySize ViInt32 Number of bytes in the user-allocated dataArray. Used
for verification / protection.

segDescArraySize ViInt32 Number of bytes in the user-allocated segDescArray.
Used for verification / protection.

flags ViInt32 ONLY used for DIGITIZERS
0 = First data point is before delayTime after Trigger
1 = First data point is at a fixed number of points with
respect to the resynchronized trigger

reserved ViInt32 Reserved for future use, set to 0.
reserved2 ViReal64 Reserved for future use, set to 0.
reserved3 ViReal64 Reserved for future use, set to 0.

Segment Descriptor for Normal Waveforms (readMode = 0,1,3) in

AqSegmentDescriptor

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp. See
discussion below.

Segment Descriptor for Averaged Waveforms (readMode = 2,5,6) in

AqSegmentDescriptorAvg

Name Type Description
horPos ViReal64 Horizontal position of first data point.
timeStampLo
timeStampHi

ViUInt32
ViUInt32

Low and high part of the 64-bit trigger timestamp. See
discussion below.

actualTriggersInSeg ViUInt32 Number of actual triggers acquired in this segment
avgOvfl ViInt32 Acquisition overflow. See discussion below.
avgStatus ViInt32 Average depth and status. See discussion below.
avgMax ViInt32 Max value in the sequence. See discussion below.
reserved1 ViReal64 Reserved for future use

Data Descriptor in AqDataDescriptor

Name Type Description
returnedSamplesPerSeg ViInt32 Total number of data samples actually returned.

DataArray[indexFirstPoint]…
DataArray[indexFirstPoint+ returnedSamplesPerSeg-1]

indexFirstPoint ViInt32 Offset of the first valid data point, that of the first
sample, in the destination array. It should always be in
the range [0...31]. It is not an offset in bytes but rather
and index in units of samples that may occupy more
than one byte.

sampTime ViReal64 Sampling interval in seconds.
vGain ViReal64 Vertical gain in Volts/LSB. See discussion below.
vOffset ViReal64 Vertical offset in Volts. See discussion below.
returnedSegments ViInt32 Number of segments
nbrAvgWforms ViInt32 Number of averaged waveforms (nominal) in segment
actualTriggersInAcqLo
actualTriggersInAcqHi

ViUInt32
ViUInt32

Low and high part of the 64-bit count of the number of
triggers taken for the entire acquisition

Programmer’s Reference Manual Page 135 of 159

actualDataSize ViUInt32 Actual length in bytes used at dataArray. This value is
only returned for SSR and AdvancedTDC Analyzers.

reserved2 ViInt32 Reserved for future use
reserved3 ViReal64 Reserved for future use

Discussion

All structures used in this function can be found in the header file AcqirisDataTypes.h.

The type of the dataArray is determined from the AqReadParameters struct entry dataType.

Remember to set all values of the AqReadParameters structure, including the reserved values.

The following dataType and readMode combinations are supported:
 0 =

standard
1 =
image

2 =
averaged

3 =
gated

4 =
peaks

5 = short
averaged

6 = shifted
short averaged

7 = SSR 9 =
Histogram

0 = Int8 8,10 8,10 - APX01 - - - X
1 = Int16 10,12 10,12 - - - X X - AdvTDC
2 = Int32 - - X - AdvTDC - - - AdvTDC
3 = Real64 X X X - APX01 X X -

In this table

‘X’ means that the functionality is available depending on the option but independent of
the model,

'8' means that the functionality is available for 8-bit Digitizers and AP units in the
digitizer mode,

'10' means that it is available for the 10-bit Digitizers,

'12' means that it is available for the 12-bit Digitizers.

It must be remembered that 12-bit digitizers generate 12 or 13-bit data which will be transferred
as 2 bytes with the data shifted so that the MSB of the data becomes the MSB of the 16-bit word,
thus preserving the sign information. The vGain value is therefore not the gain of the ADC in
volts/LSB but rather the volts/LSB of the 16-bit word.

10-bit digitizers generate 12-bit data which can be transferred in either of 2 ways

• 2 bytes with the data shifted so that the MSB of the data becomes the MSB of the 16-bit
word, thus preserving the sign information

• 1 byte with the 8-bit data of the most significant bits of the ADC value. Here the lowest
two bits will be lost (truncated). The advantage is that the amount of data to be
transferred has been cut by a factor of 2.

Real64 readout of 10-bit digitizers is based on 16-bit transfer of the data,

The value in Volts of any integer data point data in the returned dataArray for a digitizer can be
computed with the formula:

V = vGain * data – vOffset

Except in the case of Analyzers, the data points for dataType = 3 are in Volts and no conversion
is needed. For Analyzers the data points are in units of the LSB of the ADC and must be
converted using the formula above.

For readMode = 0 and dataType ≤ 1, indexFirstPoint must be used for the correct
identification of the first data point in the dataArray.

Programmer’s Reference Manual Page 136 of 159

The 3 "averaged" modes correspond to:

2 – 24-bit data read as such into either Int32 32-bit integers or converted into volts for
Real64,

5 – 16-bit data read of the least significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows,

6 – 16-bit data read of the most significant 16 bits of the 24-bit sum. The result is
presented in either an Int16 array or converted into volts for Real 64. The user is
responsible for treating any potential overflows.

It should also be noted that the interpretation of averager results was discussed in the
Programmer’s Guide section 3.9.4, Reading an Averaged Waveform from an Averager and
3.9.5, Reading a RT Add/Subtract Averaged Waveform from an Averager.

If readMode is set to gated, the nbrSamplesInSeg is set to the sum of the gate lengths.

The rules for the allocation of memory for the dataArray are as follows:
 For digitizers (or other modules used as such)

o with readMode = 0 and dataType = 0, the array size in bytes must be at least
(nbrSamplesInSeg+32).

o with readMode = 0 and dataType = 1, the array size in words must be at least
(nbrSamplesInSeg+32).

o with readMode = 0 and dataType = 3, the array size in bytes must be at least 40 for
8-bit digitizers and 88 for 10-bit and 12-bit digitizers.

o with readMode = 1 the waveform destination array dataArray must not only
allocate enough space to hold the requested data, but also some additional space.
This function achieves a higher transfer speed by simply transferring an image of
the digitizer memory to the CPU memory, and then reordering all circular segment
buffers into linear arrays. Since allocating a temporary buffer for the memory
image is time consuming, the user-allocated destination buffer is also used as a
temporary storage for the memory image. The rule for the minimum storage space
to allocate with waveformArray is discussed in the Programmer’s Guide section
3.9.2, Reading Sequences of Waveforms.

 For averagers readMode = 2, 5 or 6 are allowed and the size must be at least

nbrSamplesInSeg* nbrSegments * size_of_dataType

 For analyzers

o with readMode = 0,1,2 its size must be at least nbrSamplesInSeg* nbrSegments
o with readMode = 3 the array size must be at least the sum of all gate lengths.
o with readMode = 4 in the APx01 analyszers the array size must be 4*sizeof(double)

* number of gates
o with readMode = 4 in the AdvancedTDC analyszers the array size must be

8 * number of peaks
o with readMode = 7 in the AdvancedTDC or SSR analyszers the array size must be

 8 * nbrSegments + nbrSamplesInSeg* nbrSegments for the worst case of all the
data

o with readMode = 9 the array size must be at least
• 2**HistoRes*nbrSamplesInSeg* nbrSegments*Size_of_dataType if a

segmented histogram is used and
where

• HistoRes is the value used in the call to Acqrs_configAvgConfig with
"TdcHistogramRes"

• NbrSegments is either 1 or the number of segments if the value used in
the call to Acqrs_configAvgConfig with "TdcHistogramMode" is 1

• Size_dataType = 2*(1+HistoDepth), where HistoDepth is the value used
in the call to Acqrs_configAvgConfig with "TdcHistogramDepth"

o for all other cases, its size, in bytes, must be at least nbrSamplesInSeg*
nbrSegments*size_of_dataType

Programmer’s Reference Manual Page 137 of 159

For configuring gate parameters see the User Manual: Family of Analyzers

The value of returnedSamplesPerSeg for readMode = 7 is not useable and therefore set to 0.

If used the segment descriptor array segDesc[] must always be allocated with a length that
corresponds to the total number of segments requested with nbrSegments in
AqReadParameters. The first requested segment is therefore deposited in SegDesc[0]. The
segment descriptor array must also be allocated with the correct structure type that depends on
the readMode. If not used a Null pointer can be passed to the function. There are no segment
descriptors for readMode = 4, 7, 9, and 10.

The returned segment descriptor values timeStampLo and timeStampHi are respectively the
low and high parts of the 64-bit trigger timestamp, in units of picoseconds. The timestamp is the
trigger time with respect to an arbitrary time origin (usually the start-time of the acquisition
except for the 10-bit digitizers), which is intended for the computation of time differences
between segments of a Sequence acquisition. Please refer to the Programmer’s Guide section
3.13, Timestamps, for a detailed explanation.

The returned segment descriptor value horPos is the horizontal position, for the segment, of the
first (nominal) data point with respect to the origin of the nominal trigger delay in seconds. Since
the first data point is BEFORE the origin, this number will be in the range [-sampTime, 0].
Refer to the Programmer’s Guide section 3.10, Trigger Delay and Horizontal Waveform
Position, for a detailed discussion of the value delayTime. For Averaged Waveforms, the value
of horPos will always be 0.

avgOvfl, avgStatus and avgMax will apply to Signal Averagers only. The features that they
support have not yet been implemented.

The value of segmentOffset must be ≥ nbrSamplesInSeg. The waveforms are thus transferred
sequentially into a single linear buffer, with 'holes' of length (segmentOffset – nbrSamplesInSeg)
between them. Such 'holes' could be used for depositing additional segment-specific information
before storing the entire sequence as a single array to disk. If you specify firstSegment > 0, you
don’t have to allocate any buffer space for waveforms that are not read, i.e. waveformArray[0]
corresponds to the first sample of the segment firstSegment.

Example: In a DC270, if you specify nbrSamplesInSeg = segmentOffset = 1500. Then with
nbrSegments = 80 and nbrSamplesNom = 1000, since the currentSegmentPad = 408, you would
have to allocate at least 1408 * (80 + 1) = 114'048 bytes.

It is strongly recommended to allocate the waveform destination buffers permanently rather than
dynamically, in order to avoid system overheads for buffer allocation/deallocation.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readData(ViSession instrumentID,

ViInt32 channel, AqReadParameters* readPar,
ViAddr dataArray, AqDataDescriptor* descriptor,
ViAddr segDesc);

LabVIEW Representations

AqDx Read Digitizer Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8, I16 or DBL.

It is meant for the readout of multiple segments with readMode = 1.

Programmer’s Reference Manual Page 138 of 159

AqDx Read Raw Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I8, I16.

It is meant for the readout of a single segment with readMode = 0.

AqDx Read Averager Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an averager with readMode = 2.

AqDx Read Gated Data.vi

It is meant for the readout of an analyzer with readMode = 3.

AqDx Read Peaks Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I32 or DBL

It is meant for the readout of an analyzer with readMode = 4.

AqDx Read SSR Data.vi

 It is meant for the readout of an analyzer with readMode = 7.

Programmer’s Reference Manual Page 139 of 159

AqDx Read Histogram Data.vi

This Vi is polymorphic, the sample data is returned in an array of type I16 or I32

It is meant for the readout of an Advanced TDC analyzer with readMode = 4.

Visual Basic Representation

ReadData (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 readPar As AqReadParameters, _
 dataArray As Any, _
 dataDesc As AqDataDescriptor, _
 segDescArray As Any) As Long

Visual Basic .NET Representation

AcqrsD1_readData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByRef dataArray As DATATYPE, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptor) As Int32
Where DATATYPE can be either Int8, Int16, or Double

or

AcqrsD1_readData (ByVal instrumentID As Int32, _
 ByVal channel As Int32, _
 ByRef readPar As AqReadParameters, _
 ByRef dataArray As DATATYPEAVG, _
 ByRef dataDesc As AqDataDescriptor, _
 ByRef segDescArray As AqSegmentDescriptorAvg) As Int32 Int32
Where DATATYPEAVG can be either Int16, Int32, or Double

MATLAB MEX Representation

[status dataDesc segDescArray dataArray] = Aq_readData(instrumentID,

channel, readPar)

Programmer’s Reference Manual Page 140 of 159

2.3.65 AcqrsD1_readFCounter

Purpose

Returns the result of a frequency counter measurement

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

result ViReal64 Result of measurement

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The result must be interpreted as a function of the effected measurement ‘type’:
Measurement Type Units
 0 Frequency Hz
 1 Period Sec
 2 Totalize by Time Counts
 3 Totalize by Gate Counts

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readFCounter(ViSession instrumentID,

ViReal64* result);

LabVIEW Representation

AqDx Read FCounter.vi

Visual Basic Representation

ReadFCounter (ByVal instrumentID As Long, result As Double) As Long

Visual Basic .NET Representation

AcqrsD1_readFCounter (ByVal instrumentID As Int32, _
 ByRef result As Double) As Int32

MATLAB MEX Representation

[status result] = Aq_readFCounter(instrumentID)

Programmer’s Reference Manual Page 141 of 159

2.3.66 AcqrsD1_readRealSequence (DEPRECATED)

Purpose

Returns a sequence of waveforms as a floating point (double) array, with the measured data
values in Volts.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
firstSegment ViInt32 Requested first segment number, may assume 0 to the

(number of segments – 1).
nbrSegments ViInt32 Requested number of segments, may assume 1 to the

number of segments set with the function
AcqrsD1_configMemory.

firstSampleInSeg ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1), as set
with the function AcqrsD1_configMemory.

nbrSamplesInSeg ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

segmentOffset ViInt32 Requested offset, in number of samples, between
adjacent segments in the destination buffer
waveformArray. Must be ≥ nbrSamplesInSeg.

arraySize ViInt32 Number of data elements in the user-allocated
waveformArray. Used for verification / protection.

Output
Name Type Description

waveformArray ViReal64 [] User-allocated waveform destination array of type
double. See discussion below for the required size.

horPos ViReal64 [] User-allocated array for horizontal positions of first
data point, one per segment. See discussion below.

sampTime ViReal64 Sampling interval in seconds
timeStampLo
timeStampHi

ViInt32 []
ViInt32 []

User-allocated arrays for low and high parts of the 64-
bit trigger timestamp. See discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Programmer’s Reference Manual Page 142 of 159

Discussion

See remarks under AcqrsD1_readCharSequencefor details about the horPos and timeStamp
parameters and the Programmer’s Guide section 3.9.2, Reading Sequences of Waveforms, for
the allocation of the buffers. The dataType = 3 rule given there for the arraySize becomes

arraySize = segmentOffset * (nbrSegments+1)

since the waveformArray here is ViReal64. However, the other rule changes too

8*arraySize ≥ (nbrSamplesNom + currentSegmentPad) * (nbrSegments+1)

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readRealSequence(ViSession instrumentID,

ViInt32 channel, ViInt32 firstSegment,
ViInt32 nbrSegments, ViInt32 firstSampleInSeg,
ViInt32 nbrSamplesInSeg, ViInt32 segmentOffset,
ViInt32 arraySize, ViReal64 waveformArray[],
ViReal64 horPos[], ViReal64* sampTime,
ViInt32 timeStampLo[],ViInt32 timeStampHi[]);

LabVIEW Representation

AqDx Read Sequence in Volts.vi should be considered as obsolete.
Please use AqDx Read Digitizer Data.vi instead

Visual Basic Representation

ReadRealSequence (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal firstSegment As Long, _
 ByVal nbrSegments As Long, _
 ByVal firstSampleInSeg As Long, _
 ByVal nbrSamplesInSeg As Long, _
 ByVal segmentOffset As Long, _
 ByVal arraySize As Long, _
 waveformArray As Double, _
 horPos As Double, _
 sampTime As Double, _
 timeStampLo As Long, _
 timeStampHi As Long) As Long

Programmer’s Reference Manual Page 143 of 159

2.3.67 AcqrsD1_readRealWform (DEPRECATED)

Purpose

Returns a waveform as a floating point (double) array, with the measured data values in Volts.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
segmentNumber ViInt32 Requested segment number, may assume 0 to the

(number of segments – 1) set with the function
AcqrsD1_configMemory.

firstSample ViInt32 Requested position of first sample to read, typically 0.
May assume 0 to the (number of samples – 1) set with
the function AcqrsD1_configMemory.

nbrSamples ViInt32 Requested number of samples, may assume 1 to the
number of samples set with the function
AcqrsD1_configMemory.

Output
Name Type Description

waveformArray ViReal64 [] User-allocated waveform destination array. Its size
MUST be at least the maximum of nbrSamples or 5.

returnedSamples ViInt32 Number of data samples actually returned
horPos ViReal64 Horizontal position of first data point. See discussion

below.
sampTime ViReal64 Sampling interval in seconds
timeStampLo
timeStampHi

ViInt32
ViInt32

Low and high part of the 64-bit trigger timestamp. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See remarks under AcqrsD1_readCharWform for details about the horPos and timeStamp
parameters.

Programmer’s Reference Manual Page 144 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_readRealWform(ViSession instrumentID,

ViInt32 channel, ViInt32 segmentNumber,
ViInt32 firstSample, ViInt32 nbrSamples,
ViReal64 waveformArray[], ViInt32* returnedSamples,
ViReal64* horPos, ViReal64* sampTime,
ViInt32* timeStampLo, ViInt32* timeStampHi);

LabVIEW Representation

AqDx Read Waveform in Volts.vi should be considered as obsolete.
Please use AqDx Read Digitizer Data.vi instead

Visual Basic Representation

ReadRealWform (ByVal instrumentID As Long, _
 ByVal channel As Long, _
 ByVal segmentNumber As Long, _
 ByVal firstSample As Long, _
 ByVal nbrSamples As Long, _
 waveformArray As Double, _
 returnedSamples As Long, _
 horPos As Double, _
 sampTime As Double, _
 timeStampLo As Long, _
 timeStampHi As Long) As Long

Programmer’s Reference Manual Page 145 of 159

2.3.68 AcqrsD1_reportNbrAcquiredSegments

Purpose

Returns the number of segments already acquired for a digitizer. For averagers (but not AP100 or
AP200) it will give the number of triggers already accepted for the current acquisition. In the
case of analyzers it will return the value 1 at the end of the acquisition and is therefore not of
much use.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Output
Name Type Description

nbrSegments ViInt32 Number of segments already acquired

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Can be called after an acquisition, in order to obtain the number of segments/triggers actually
acquired (until AcqrsD1_stopAcquisition was called).

NOTE: For a digitizer, calling this function while an acquisition is active, in order to follow
the progress of a Sequence acquisition, is dangerous and must be avoided.

As needed the result should be interpreted as a ViUInt32.

Programmer’s Reference Manual Page 146 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_reportNbrAcquiredSegments(

ViSession instrumentID, ViInt32* nbrSegments);

LabVIEW Representation

AqDx Query Number of Acquired Segments.vi

Visual Basic Representation

ReportNbrAcquiredSegments (ByVal instrumentID As Long, _
 nbrSegments As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reportNbrAcquiredSegments (ByVal instrumentID As Int32, _
 ByRef nbrSegments As Int32) As Int32

MATLAB MEX Representation

[status nbrSegments] = Aq_reportNbrAcquiredSegments(instrumentID)

Programmer’s Reference Manual Page 147 of 159

2.3.69 AcqrsD1_reset

Purpose

Resets an instrument.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

There is no known situation where this action is to be recommended.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_reset(ViSession instrumentID);

LabVIEW Representation

AqDx Reset.vi

Visual Basic Representation

Reset (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_reset (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_reset(instrumentID)

Programmer’s Reference Manual Page 148 of 159

2.3.70 AcqrsD1_resetDigitizerMemory

Purpose

Resets the digitizer memory to a known default state.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

Each byte of the digitizer memory is overwritten sequentially with the values 0xaa, 0x55, 0x00
and 0xff. This functionality is mostly intended for use with battery backed-up memories.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_resetDigitizerMemory(

ViSession instrumentID);

LabVIEW Representation

AqDx Reset Digitizer Memory.vi

Visual Basic Representation

ResetDigitizerMemory (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_resetDigitizerMemory (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_resetDigitizerMemory(instrumentID)

Programmer’s Reference Manual Page 149 of 159

2.3.71 AcqrsD1_restoreInternalRegisters

Purpose

Restores some internal registers of an instrument.
Only needed after power-up of a digitizer with the battery back-up option.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
delayOffset ViReal64 Global delay offset, should be retrieved with

AcqrsD1_getInstrumentInfo(…,
“DelayOffset”, ..) before power-off
If not known, use the value –20.0e-9

delayScale ViReal64 Global delay scale, should be retrieved with
AcqrsD1_getInstrumentInfo(…,
“DelayScale”, ..) before power-off
If not known, use the value 5.0e-12

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

The normal startup sequence destroys the contents of the Acqiris digitizer memories. This
function, together with a specific sequence of other function calls, prevents this from occurring
in digitizers with battery backed-up memories.

Please refer to the Programmer’s Guide section 3.17, Readout of Battery Backed-up
Memories, for a detailed description of the required initialization sequence to read battery
backed-up waveforms.

Programmer’s Reference Manual Page 150 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_restoreInternalRegisters(

ViSession instrumentID, ViReal64 delayOffset,
ViReal64 delayScale);

LabVIEW Representation

AqDx Restore Internal Registers.vi

Visual Basic Representation

RestoreInternalRegisters (ByVal instrumentID As Long,
 ByVal delayOffset As Double,
 ByVal delayScale As Double) As Long

Visual Basic .NET Representation

AcqrsD1_restoreInternalRegisters (ByVal instrumentID As Int32,
 ByVal delayOffset As Double,
 ByVal delayScale As Double) As Int32

MATLAB MEX Representation

[status] = Aq_restoreInternalRegisters(instrumentID, delayOffset,

delayScale)

Programmer’s Reference Manual Page 151 of 159

2.3.72 AcqrsD1_setAttributeString

Purpose

Sets an attribute with a string value (for use in SC Streaming Analyzers ONLY).

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
channel ViInt32 1...Nchan
name ViConstString ASCII string that specifies options

“odlTxBitRate” is currently the only one used
value ViConstString For “odlTxBitRate” can have values like

“2.5G”,”2.125G”, or “1.0625G”

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setAttributeString(ViSession instrumentID,

ViInt32 channel, ViConstString name,
 ViConstString value);

LabVIEW Representation

Not Yet Available

Visual Basic Representation

Not Yet Available

Visual Basic .NET Representation

Not Yet Available

MATLAB MEX Representation

Not Yet Available

Programmer’s Reference Manual Page 152 of 159

2.3.73 AcqrsD1_setLEDColor

Purpose

Sets the front panel LED to the desired color.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
color ViInt32 0 = OFF (return to normal acquisition status indicator)

1 = Green
2 = Red
3 = Yellow

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setLEDColor(ViSession instrumentID,

ViInt32 color);

LabVIEW Representation

AqDx Set LED Color.vi

Visual Basic Representation

SetLEDColor (ByVal instrumentID As Long, _
 ByVal color As Long) As Long

Visual Basic .NET Representation

AcqrsD1_setLEDColor (ByVal instrumentID As Int32, _
 ByVal color As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_setLEDColor(instrumentID, color)

Programmer’s Reference Manual Page 153 of 159

2.3.74 AcqrsD1_setSimulationOptions

Purpose

Sets one or several options which will be used by the function AcqrsD1_InitWithOptions,
provided that the optionsString supplied to AcqrsD1_InitWithOptions contains the string
"simulate=TRUE".

Parameters

Input
Name Type Description

simOptionString ViString String listing the desired simulation options. See
discussion below.

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

See the Programmer’s Guide section 3.2.9, Simulated Devices, for details on simulation. A
string of the form “M8M” is used to set an 8 Mbyte simulated memory. The simulation options
are reset to none by setting simOptionString to an empty string "".

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_setSimulationOptions(

ViString simOptionString);

LabVIEW Representation

Use AqDx Initialize with Options.vi

Visual Basic Representation

SetSimulationOptions (ByVal simOptionString As String) As Long

Visual Basic .NET Representation

AcqrsD1_setSimulationOptions (ByVal simOptionString As String) _
 As Int32

MATLAB MEX Representation

[status] = Aq_setSimulationOptions(simOptionsString)

Programmer’s Reference Manual Page 154 of 159

2.3.75 AcqrsD1_stopAcquisition

Purpose

Stops the acquisition.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the acquisition and not return until this has been accomplished. The data
is not guaranteed to be valid. To obtain valid data after "manually" stopping the acquisition (e.g.
timeout waiting for a trigger), one should use the AcqrsD1_forceTrig function to generate a
"software" (or "manual") trigger, and then continue polling for the end of the acquisition with
AcqrsD1_acqDone. This will ensure correct completion of the acquisition.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_stopAcquisition(ViSession instrumentID);

LabVIEW Representation

AqDx Stop Acquisition.vi

Visual Basic Representation

StopAcquisition (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopAcquisition (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_stopAcquisition(instrumentID)

Programmer’s Reference Manual Page 155 of 159

2.3.76 AcqrsD1_stopProcessing

Purpose

Stops on-board data processing. This routine is for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will stop the on-board data processing immediately. The output data is not
guaranteed to be valid.

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_stopProcessing(ViSession instrumentID);

LabVIEW Representation

AqDx Stop Processing.vi

Visual Basic Representation

StopProcessing (ByVal instrumentID As Long) As Long

Visual Basic .NET Representation

AcqrsD1_stopProcessing (ByVal instrumentID As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_stopProcessing(instrumentID)

Programmer’s Reference Manual Page 156 of 159

2.3.77 AcqrsD1_waitForEndOfAcquisition

Purpose

Waits for the end of acquisition.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the acquisition has terminated or when the requested timeout
has elapsed, whichever is shorter. For protection, the timeout is clipped to a maximum value of
10 seconds. If a larger timeout is needed, call this function repeatedly.

While waiting for the acquisition to terminate, the calling thread is put into 'idle', permitting
other threads or processes to fully use the CPU.

If a channel or trigger overload was detected, the returned status is always
ACQIRIS_ERROR_OVERLOAD. Else, if the acquisition times out, the returned status is
ACQIRIS_ERROR_ACQ_TIMEOUT, in which case you should use either
AcqrsD1_stopAcquisition or AcqrsD1_forceTrig to stop the acquisition. Otherwise, the
returned status is VI_SUCCESS.

Programmer’s Reference Manual Page 157 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfAcquisition (ViSession

instrumentID, ViInt32 timeout);

LabVIEW Representation

AqDx Wait For End Of Acquisition.vi

Visual Basic Representation

WaitForEndOfAcquisition (ByVal instrumentID As Long, _
 ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsD1_waitForEndOfAcquisition (ByVal instrumentID As Int32, _
 ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_waitForEndOfAcquisition(instrumentID, timeOut)

Programmer’s Reference Manual Page 158 of 159

2.3.78 AcqrsD1_waitForEndOfProcessing

Purpose

Waits for the end of on-board data processing. . This routine is for Analyzers only.

Parameters

Input
Name Type Description

instrumentID ViSession Instrument identifier
timeout ViInt32 Timeout in milliseconds

Return Value

Name Type Description
status ViStatus Refer to Table 2-1 for error codes.

Discussion

This function will return only after the on-board processing has terminated or when the requested
timeout has elapsed, whichever is shorter. For protection, the timeout is clipped to a maximum
value of 10 seconds. If a larger timeout is needed, call this function repeatedly.

While waiting for the processing to terminate, the calling thread is put into 'idle', permitting other
threads or processes to fully use the CPU.

If the processing times out, the returned status is ACQIRIS_ERROR_PROC_TIMEOUT, in
which case you should use AcqrsD1_stopProcessing to stop the processing. Otherwise, the
returned status is VI_SUCCESS.

Programmer’s Reference Manual Page 159 of 159

LabWindowsCVI/Visual C++ Representation

ViStatus status = AcqrsD1_waitForEndOfProcessing(ViSession

instrumentID, ViInt32 timeout);

LabVIEW Representation

AqDx Wait For End Of Processing.vi

Visual Basic Representation

WaitForEndOfProcessing (ByVal instrumentID As Long, _
 ByVal timeout As Long) As Long

Visual Basic .NET Representation

AcqrsD1_waitForEndOfProcessing (ByVal instrumentID As Int32, _
 ByVal timeout As Int32) As Int32

MATLAB MEX Representation

[status] = Aq_waitForEndOfProcessing(instrumentID, timeOut)

	1. Introduction
	1.1. Message to the User
	1.2. Using this Manual
	1.3. Conventions Used in This Manual
	1.4. Warning Regarding Medical Use
	1.5. Warranty
	1.6. Warranty and Repair Return Procedure, Assistance and Support
	1.7. System Requirements

	2. Device Driver Function Reference
	2.1. Status values and Error codes
	2.2. API Function classification
	2.3. API Function descriptions
	2.3.1 AcqrsD1_accumulateData
	2.3.2 AcqrsD1_accumulateWform (DEPRECATED)
	2.3.3 AcqrsD1_acqDone
	2.3.4 AcqrsD1_acquire
	2.3.5 AcqrsD1_acquireEx
	2.3.6 AcqrsD1_averagedData
	2.3.7 AcqrsD1_averagedWform (DEPRECATED)
	2.3.8 AcqrsD1_bestNominalSamples
	2.3.9 AcqrsD1_bestSampInterval
	2.3.10 AcqrsD1_calibrate
	2.3.11 AcqrsD1_calibrateEx
	2.3.12 AcqrsD1_close
	2.3.13 AcqrsD1_closeAll
	2.3.14 AcqrsD1_configAvgConfig
	2.3.15 AcqrsD1_configChannelCombination
	2.3.16 AcqrsD1_configControlIO
	2.3.17 AcqrsD1_configExtClock
	2.3.18 AcqrsD1_configFCounter
	2.3.19 AcqrsD1_configHorizontal
	2.3.20 AcqrsD1_configLogicDevice
	2.3.21 AcqrsD1_configMemory
	2.3.22 AcqrsD1_configMemoryEx
	2.3.23 AcqrsD1_configMode
	2.3.24 AcqrsD1_configMultiInput
	2.3.25 AcqrsD1_configSetupArray
	2.3.26 AcqrsD1_configTrigClass
	2.3.27 AcqrsD1_configTrigSource
	2.3.28 AcqrsD1_configTrigTV
	2.3.29 AcqrsD1_configVertical
	2.3.30 AcqrsD1_errorMessage
	2.3.31 AcqrsD1_errorMessageEx
	2.3.32 AcqrsD1_forceTrig
	2.3.33 AcqrsD1_forceTrigEx
	2.3.34 AcqrsD1_getAvgConfig
	2.3.35 AcqrsD1_getChannelCombination
	2.3.36 AcqrsD1_getControlIO
	2.3.37 AcqrsD1_getExtClock
	2.3.38 AcqrsD1_getFCounter
	2.3.39 AcqrsD1_getHorizontal
	2.3.40 AcqrsD1_getInstrumentData
	2.3.41 AcqrsD1_getInstrumentInfo
	2.3.42 AcqrsD1_getMemory
	2.3.43 AcqrsD1_getMemoryEx
	2.3.44 AcqrsD1_getMode
	2.3.45 AcqrsD1_getMultiInput
	2.3.46 AcqrsD1_getNbrChannels
	2.3.47 AcqrsD1_getNbrPhysicalInstruments
	2.3.48 AcqrsD1_getSetupArray
	2.3.49 AcqrsD1_getTrigClass
	2.3.50 AcqrsD1_getTrigSource
	2.3.51 AcqrsD1_getTrigTV
	2.3.52 AcqrsD1_getVersion
	2.3.53 AcqrsD1_getVertical
	2.3.54 AcqrsD1_init
	2.3.55 AcqrsD1_InitWithOptions
	2.3.56 AcqrsD1_logicDeviceIO
	2.3.57 AcqrsD1_multiInstrAutoDefine
	2.3.58 AcqrsD1_multiInstrDefine
	2.3.59 AcqrsD1_multiInstrUndefineAll
	2.3.60 AcqrsD1_procDone
	2.3.61 AcqrsD1_processData
	2.3.62 AcqrsD1_readCharSequence (DEPRECATED)
	2.3.63 AcqrsD1_readCharWform (DEPRECATED)
	2.3.64 AcqrsD1_readData
	2.3.65 AcqrsD1_readFCounter
	2.3.66 AcqrsD1_readRealSequence (DEPRECATED)
	2.3.67 AcqrsD1_readRealWform (DEPRECATED)
	2.3.68 AcqrsD1_reportNbrAcquiredSegments
	2.3.69 AcqrsD1_reset
	2.3.70 AcqrsD1_resetDigitizerMemory
	2.3.71 AcqrsD1_restoreInternalRegisters
	2.3.72 AcqrsD1_setAttributeString
	2.3.73 AcqrsD1_setLEDColor
	2.3.74 AcqrsD1_setSimulationOptions
	2.3.75 AcqrsD1_stopAcquisition
	2.3.76 AcqrsD1_stopProcessing
	2.3.77 AcqrsD1_waitForEndOfAcquisition
	2.3.78 AcqrsD1_waitForEndOfProcessing

