A Mini Time Projection Chamber for the PEN Experiment

L. Peter Alonzi III

University of Virginia

April APS Meeting Washington D.C., 14 February 2010

Motivation

mTPC

Collaboration

PEN Experiment: Motivation and Context

Mini Time Projection Chamber (mTPC)

Global Context $\pi \to e\nu$

THEORY:
$$BR = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} =$$

 $\begin{cases} (1.2352\pm0.0005)\times10^{-4} & \text{Mar} \\ (1.2354\pm0.0002)\times10^{-4} & \text{Fink} \\ (1.2352\pm0.0001)\times10^{-4} & \text{Cirig} \end{cases}$

Marciano and Sirlin, [PRL **71** (1993) 3629] Finkemeier, [Phys. Lett. B **387** (1996) 391] Cirigliano and Rosell, [PRL **99**, 231801 (2007)]

EXPERIMENT [PDG]: $BR = (1.230 \pm 0.004) \times 10^{-4}; \frac{\delta BR}{BR} \approx 3.3 \times 10^{-3}$

PEN GOAL:
$$\frac{\delta BR}{BR} < 5 \times 10^{-4}$$

Global Context $\pi \to e\nu$

THEORY:
$$BR = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} =$$

 $\begin{cases} (1.2352 \pm 0.0005) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ (1.2354 \pm 0.0002) \times 10^{-4} & \text{Finkemeier, [Phys. Lett. B$ **387** $(1996) 391]} \\ (1.2352 \pm 0.0001) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

EXPERIMENT [PDG]: $BR = (1.230 \pm 0.004) \times 10^{-4}; \frac{\delta BR}{BR} \approx 3.3 \times 10^{-3}$

PEN GOAL:
$$\frac{\delta BR}{BR} < 5 \times 10^{-4}$$

PEN Experimental Program

Precision measurement of hadronic charged current decay

- $\pi^+ \rightarrow e^+ \nu_e$
 - $\circ e \mu$ universality
 - V-A coupling deviations (pseudoscalar)
 - $\circ~m_{\textit{h}^{+}}, PS/V$ leptoquarks, etc.

• $\pi^+ \rightarrow e^+ \nu_e \gamma$

- V-A coupling deviations (tensor)
- $\mathbf{F}_{A}/\mathbf{F}_{V}$, χ PT test
- $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu \gamma$
 - $\circ \ \mathcal{L}_{weak}$ departures from V-A

mTPC

Collaboration

PEN Experimental Setup

- $\pi E1$ beamline at PSI
- Stopped π^+ beam
- 240-module Csl calorimeter
- Active target
- Central tracking
- Some Systematics
 - Decay in flight events
 - Csl gainmatching
 - Detector Alignment

mTPC

Collaboration

PEN Experimental Setup

- $\pi E1$ beamline at PSI
- Stopped π^+ beam
- 240-module Csl calorimeter
- Active target
- Central tracking
- Some Systematics
 - Decay in flight events
 - Csl gainmatching
 - Detector Alignment

Decay In Flight Kinematics

mTPC Technical Specifications

- Proportional Region: 40x6x40 mm
- Drift Region: 40x40x50 mm
- Drift Gas: 90% He and $10\% C_2H_6$
- 4000 V across drift region
- Grid: 50 μ m wires with 1 mm spacing
- Nichrome Anode Wires
 - 40 mm length
 - \circ 20 μ m diameter
 - 10 mm spacing
 - \circ 235 Ω resistance
- CAEN VME digitizer V1720

Fabricated by our collaborators from Dubna, Russia

L.P. Alonzi (UVa)

The PEN Experiment

Waveform Digitization

- x: charge division
- y: drift time
- z: wire location

L.P. Alonzi (UVa)

The PEN Experiment

Collaboration

mTPC Coordinate Calibration

- MWPC coordinates well known
- Calibrate mTPC with MWPC

L.P. Alonzi (UVa)

mTPC coordinate Resolution

$$\delta_i = i_2 - i_1 + \frac{(i_0 - i_3)}{3}$$
$$\sigma_i = \frac{RMS_{\delta_i}}{\sqrt{1^2 + 1^2 + (1/3)^2 + (1/3)^2}}$$

 $\Rightarrow \sigma_x < 1.3 \, {
m mm} \, ({
m charge division}) \ \Rightarrow \sigma_y < 0.35 \, {
m mm} \, ({
m drift time})$

mTPC coordinate Resolution

$$\delta_i = i_2 - i_1 + \frac{(i_0 - i_3)}{3}$$
$$\sigma_i = \frac{RMS_{\delta_i}}{\sqrt{1^2 + 1^2 + (1/3)^2 + (1/3)^2}}$$

 $\Rightarrow \sigma_x < 1.3 \text{ mm (charge division)} \\\Rightarrow \sigma_y < 0.35 \text{ mm (drift time)}$

Results from 2009 Data Run

Experiment R-05-01 (PEN) collaboration members:

L. P. Alonzi^a, V. A. Baranov^b, W. Bertl^c, M. Bychkov^a, Yu.M. Bystritsky^b, E. Frlež^a, V.A. Kalinnikov^b, N.V. Khomutov^b, A.S. Korenchenko^b, S.M. Korenchenko^b, M. Korolija^d, T. Kozlowski^e, N.P. Kravchuk^b, N.A. Kuchinsky^b, M.C. Lehman^a, D. Mekterović^d, D. Mzhavia^{b,f}, A. Palladino^{a,c}, D. Počanić^{a*}, P. Robmann^g, A.M. Rozhdestvensky^b, S.N. Shkarovskiy^b, U. Straumann^g, I. Supek^d, P. Truöl^g, Z. Tsamalaidze^f, A. van der Schaaf^{g*}, E.P. Velicheva^b, and V.P. Volnykh^b

^aDept of Physics, Univ. of Virginia, Charlottesville, VA 22904-4714, USA ^bJoint Institute for Nuclear Research, RU-141980 Dubna, Russia ^cPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^dInstitut "Rudjer Bošković", HR-10000 Zagreb, Croatia ^eInst. Problemów Jądrowych im. Andrzeja Sołtana PL-05-400 Swierk, Poland ^fIHEP, Tbilisi State University, GUS-380086 Tbilisi, Georgia ^gPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

Web page: http://pen.phys.virginia.edu