Don't Change the Channel ... Study it for a While Precision Measurements of Rare Pion Decay Channels

L. Peter Alonzi III

University of Virginia - PEN Collaboration

27th of March, 2012

Fundamentals of Pion Decay

Outline

Fundamentals of Pion Decay

Experimental Techniques

Results

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 2 / 35

Results

Warm Up

How many games are played in a single elimination tournament?

Warm Up

How many games are played in a single elimination tournament?

Cheat Sheet

Warm Up

How many games are played in a single elimination tournament?

Cheat Sheet

• 32+16+8+4+2+1 = 63 games

•
$$\sum_{i=0}^{k-1} 2^i = 63$$
 (w/ $k = \#$ rounds)

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 3 / 35

Warm Up

How many games are played in a single elimination tournament?

Invoking the fundamental nature of a phenomena is powerful.

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 3 / 35

L.P. Alonzi (UVa-PEN)

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 4 / 35

Feynman's Analogy

Imagine you are watching a game of chess; except you do not know the rules, and cannot see the whole board.

Street Chess by Petr Kratochvil

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 5 / 35

Pion Decay

 $http://teachers.web.cern.ch/teachers/archiv/HST2006/bubble_chambers/BCWebIntro.htm \\$

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

Pion Decay

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 6 / 35

The Pion's Role

- Testing Yukawa's hypothesis
- Mass of the W boson
- Characterize Weak Force (V-A)

- Weak Lepton Universality
- Pion Structure (F_A/F_V)
- Beyond Standard Model Tests

Tree Level Pion Decay

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

Fundamentals of Pion Decay

Experimental Techniques

Results

Mirror Symmetry: $(x \rightarrow -x, y \rightarrow -y, z \rightarrow -z)$

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 9 / 35

Fundamentals of Pion Decay

Experimental Techniques

Results

Mirror Symmetry: $(x \rightarrow -x, y \rightarrow -y, z \rightarrow -z)$

SPIN WOLNEWOW TOTAL MOMENTUM SPIN

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 9 / 35

Results

The Left-Handed Force

 $\mathcal{M} \sim \bar{u}(p)\gamma_{\mu}(1-\gamma^5)\nu(k)$ Helicity $\equiv \vec{S} \bullet \vec{P}$

Helicity is **not** a Lorentz invariant. Violation \sim mass

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 10 / 35

Global Context $\pi \to e\nu$

THEORY:
$$BR = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = \frac{g_e}{g_\mu} \frac{m_e^2(m_\pi^2 - m_e^2)}{m_\pi^2(m_\pi^2 - m_\mu^2)} =$$

 $\begin{cases} (1.2352\pm0.0005)\times10^{-4} & \mbox{M}\\ (1.2354\pm0.0002)\times10^{-4} & \mbox{Fi}\\ (1.2352\pm0.0001)\times10^{-4} & \mbox{C} \end{cases}$

Marciano and Sirlin, [PRL **71** (1993) 3629] Finkemeier, [Phys. Lett. B **387** (1996) 391] Cirigliano and Rosell, [PRL **99**, 231801 (2007)]

EXPERIMENT [PDG]: $BR = (1.230 \pm 0.004) \times 10^{-4}; \frac{\delta BR}{BR} \approx 3.3 \times 10^{-3}$

$$\left(\text{PEN GOAL: } \frac{\delta BR}{BR} < 5 \times 10^{-4} \right)$$

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 11 / 35

Kinematics of $\pi^+ ightarrow { m e}^+ u_{ m e} \gamma$

- Momentum Conservation (3)
- Energy Conservation (1)
- Particles (3)
- Arbitrary Rotation (3)
- 2 DOF remain

We measure 3 observables:

- photon energy (E_{γ}, x)
- positron energy (E_{e}, y)
- opening angle $(\cos \Theta_{e\gamma})$

Kinematics of $\pi^+ ightarrow { m e}^+ u_{ m e} \gamma$

12 free parameters:

- Momentum Conservation (3)
- Energy Conservation (1)
- Particles (3)
- Arbitrary Rotation (3)
- 2 DOF remain

We measure 3 observables:

- photon energy (E_{γ}, x)
- positron energy (E_{e}, y)
- opening angle $(\cos \Theta_{e\gamma})$

Results

$\mathcal{M}(\pi ightarrow \mathrm{e}^+ u_\mathrm{e} \gamma) = \mathcal{M}_{\textit{SD}} + \mathcal{M}_{\textit{IB}}$

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 13 / 35

Structure Dependent Component

$$\frac{d^2\Gamma_{SD}}{dxdy} = \frac{\alpha}{8\pi}\Gamma_{\pi\to ev} \left(\frac{m_{\pi}}{m_e}\right)^2 \left(\frac{1}{f_{\pi}}\right)^2 \left[(F_V + F_A)^2 SD^+(x,y) + (F_V - F_A)^2 SD^-(x,y)\right]$$

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 14 / 35

Inner Bremsstrahlung Component

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 15 / 35

$$\left(\frac{d^2\Gamma_{SD}}{dxdy} = \frac{\alpha}{8\pi}\Gamma_{\pi\to\text{ev}}\left(\frac{m_{\pi}}{m_{\text{e}}}\right)^2 \left(\frac{1}{f_{\pi}}\right)^2 \left[(F_V + F_A)^2 SD^+(x,y) + (F_V - F_A)^2 SD^-(x,y)\right]\right)$$

Fundamentals of Pion Decay

Outline

Fundamentals of Pion Decay

Experimental Techniques

Results

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 18 / 35

PEN Event Trigger

Processes to Observe

- $\pi \to \mathrm{e} \nu$
- $\pi \to e \nu \gamma$
- $\pi \rightarrow \mu \nu$ (norm)

Traits to Prefer

- Stopped Pion
- Early Pion decay times
- Large secondary energies

To understand the trigger is to understand the experiment.

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 19 / 35

PEN Event Trigger

Processes to Observe

- $\pi \to \mathrm{e} \nu$
- $\pi \to e \nu \gamma$
- $\pi \rightarrow \mu \nu$ (norm)

Traits to Prefer

- Stopped Pion
- Early Pion decay times
- Large secondary energies

To understand the trigger is to understand the experiment.

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 19 / 35

Results

PEN Detector Overview

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 20 / 35

PEN Detector Overview

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 20 / 35

Target Waveform Digitization

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

Background Suppression

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 22 / 35

Results

Background Suppression

mTPC Technical Specifications

- Proportional Region: 40x6x40 mm
- Drift Region: 40x40x50 mm
- Drift Gas: 90% He and $10\% C_2 H_6$
- 4000 V across drift region
- Grid: 50 μ m wires with 1 mm spacing
- Nichrome Anode Wires
 - 40 mm length
 - \circ 20 μ m diameter
 - 10 mm spacing
 - \circ 235 Ω resistance
- CAEN VME digitizer V1720

Fabricated by our collaborators from Dubna, Russia

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 24 / 35

L.P. Alonzi (UVa-PEN)

Waveform Digitization

Nuclear Physics Seminar at CENPA

27th of March, 2012 26 / 35

Results from 2009 Data Run

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

Results

2010 mTPC (Mark II)

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 28 / 35

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 29 / 35

Outline

Fundamentals of Pion Decay

Experimental Techniques

Results

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 30 / 35

Fundamentals of Pion Decay

Experimental Techniques

Results

PEN Run Summary

Year	Run Time (days)	π -stops (10 ¹⁰)	$\pi ightarrow { m e}$ (10 ⁶)	$\pi ightarrow { m e}\gamma$ (10 ³)
2008	111	7.5	4.5	5.8
2009	98	13.1	8.3	10.0
2010	68	16.4	10.3	12.5

Channel event statistics from physics goals assessment, not published results.

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

27th of March, 2012 31 / 35

Isolating F_V and F_A (2008 data)

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

Isolating F_V and F_A (2008 data)

Experiment R-05-01 (PEN) collaboration members:

L. P. Alonzi^a, V. A. Baranov^b, W. Bertl^c, M. Bychkov^a, Yu.M. Bystritsky^b, E. Frlež^a, V.A. Kalinnikov^b, N.V. Khomutov^b, A.S. Korenchenko^b, S.M. Korenchenko^b, M. Korolija^d, T. Kozlowski^e, N.P. Kravchuk^b, N.A. Kuchinsky^b, M.C. Lehman^a, D. Mekterović^d, D. Mzhavia^{b,f}, A. Palladino^{a,c}, D. Počanić^{a*}, P. Robmann^g, A.M. Rozhdestvensky^b, S.N. Shkarovskiy^b, U. Straumann^g, I. Supek^d, P. Truöl^g, Z. Tsamalaidze^f, A. van der Schaaf^{g*}, E.P. Velicheva^b, and V.P. Volnykh^b

^aDept of Physics, Univ. of Virginia, Charlottesville, VA 22904-4714, USA ^bJoint Institute for Nuclear Research, RU-141980 Dubna, Russia ^cPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^dInstitut "Rudjer Bošković", HR-10000 Zagreb, Croatia ^eInst. Problemów Jądrowych im. Andrzeja Sołtana PL-05-400 Swierk, Poland ^fIHEP, Tbilisi State University, GUS-380086 Tbilisi, Georgia ^gPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

Web page: http://pen.phys.virginia.edu

L.P. Alonzi (UVa-PEN)

Nuclear Physics Seminar at CENPA

mTPC Coordinate Calibration

- MWPC coordinates well known
- Calibrate mTPC with MWPC

Collaboration

backup

mTPC coordinate Resolution

Collaboration

backup

mTPC coordinate Resolution

$$\delta_i = i_2 - i_1 + \frac{(i_0 - i_3)}{3}$$
$$\sigma_i = \frac{RMS_{\delta_i}}{\sqrt{1^2 + 1^2 + (1/3)^2 + (1/3)^2}}$$

 $\Rightarrow \sigma_x < 1.3 \text{ mm (charge division)} \\\Rightarrow \sigma_y < 0.35 \text{ mm (drift time)}$