Measuring the Pion Substructre with Radiative Positronic Pion Decays Dissertation Committee Meeting

L. Peter Alonzi III

University of Virginia - PEN Collaboration

17<sup>th</sup> of April, 2012



## Outline

- The Physics of Pions
- The contribution of the PEN collaboration
  - $\pi^+ \to {\rm e}^+ \nu_{\rm e} \gamma$
  - Simulation

## Feynman's Analogy

Imagine you are watching a game of chess; except you do not know the rules, and cannot see the whole board.



Street Chess by Petr Kratochvil

## All of Physics







1928: Quantization  $i\gamma^{\mu}\partial_{\mu}\psi = m\psi$ 



1915 – 1967: Symmetries SU(3)<sub>C</sub>  $\otimes$  SU(2)<sub>L</sub>  $\otimes$  U(1)<sub>Y</sub>

## The Actors



Fermilab 95-759

#### What's Next?



#### What Does a Pion Look Like?



 $http://teachers.web.cern.ch/teachers/archiv/HST2006/bubble\_chambers/BCWebIntro.htm \\$ 

#### What Does a Pion Look Like?



## The Pion Frontier



- Testing Yukawa's hypothesis
- Mass of the W boson
- Weak Symmetry (V-A)



- Weak Lepton Universality
- Pion Structure  $(F_A/F_V)$
- Standard Model Tests

#### Global Context $\pi \to e\nu$

THEORY: 
$$BR = rac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = rac{g_e}{g_\mu} rac{m_e^2(m_\pi^2 - m_e^2)}{m_\pi^2(m_\pi^2 - m_\mu^2)} =$$

 $\begin{cases} (1.2352 \pm 0.0005) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ (1.2354 \pm 0.0002) \times 10^{-4} & \text{Finkemeier, [Phys. Lett. B$ **387** $(1996) 391]} \\ (1.2352 \pm 0.0001) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$ 

EXPERIMENT [PDG]:  $BR = (1.230 \pm 0.004) \times 10^{-4}; \frac{\delta BR}{BR} \approx 3.3 \times 10^{-3}$ 

$$\left( \mathsf{PEN GOAL:} \ \frac{\delta BR}{BR} < 5 \times 10^{-4} \right)$$

L.P. Alonzi (UVa–PEN)

17<sup>th</sup> of April, 2012 9 / 26

#### Branching Ratio Analysis: $\pi^+ ightarrow e^+ u \gamma$

$$BR_{\pi \to \mathrm{ev}_{\mathrm{e}}\gamma} = BR_{\pi \to \mathrm{ev}_{\mathrm{e}}} \left(\frac{N_{\pi \to \mathrm{ev}_{\mathrm{e}}\gamma}}{A_{\pi \to \mathrm{ev}_{\mathrm{e}}\gamma}}\right) \left(\frac{A_{\pi \to \mathrm{ev}_{\mathrm{e}}}}{N_{\pi \to \mathrm{ev}_{\mathrm{e}}}}\right)$$

• 
$$BR_{\pi \to e\nu_e}$$

- $N_{\pi \to e \nu_e}$
- $A_{\pi \to e \nu_e}$
- $N_{\pi \to e \nu_e \gamma}$
- $A_{\pi \to e \nu_e \gamma}$

#### The BR only makes sense for given kinematic regions!

## Kinematics of $\pi^+ \to {\rm e}^+ \nu_{\rm e} \gamma$



- Momentum Conservation (3)
- Energy Conservation (1)
- Particles (3)
- Arbitrary Rotation (3)
- 2 DOF remain

We measure 3 observables:

- photon energy  $(E_{\gamma}, x)$
- positron energy  $(E_{e}, y)$
- opening angle  $(\cos \Theta_{e\gamma})$



## Kinematics of $\pi^+ \to {\rm e}^+ \nu_{\rm e} \gamma$



12 free parameters:

- Momentum Conservation (3)
- Energy Conservation (1)
- Particles (3)
- Arbitrary Rotation (3)
- 2 DOF remain

We measure 3 observables:

- photon energy  $(E_{\gamma}, x)$
- positron energy  $(E_{\rm e}, y)$
- opening angle  $(\cos \Theta_{e\gamma})$

## Total Differential Decay Rate for $\pi^+ ightarrow { m e}^+ u_{ m e} \gamma$



# $\mathcal{M}(\pi \to \mathrm{e}^+ \nu_\mathrm{e} \gamma) = \mathcal{M}_{\textit{SD}} + \mathcal{M}_{\textit{IB}}$



#### Structure Dependent Component



$$\frac{d^2\Gamma_{SD}}{dxdy} = \frac{\alpha}{8\pi}\Gamma_{\pi\to ev} \left(\frac{m_{\pi}}{m_e}\right)^2 \left(\frac{1}{f_{\pi}}\right)^2 \left[(F_V + F_A)^2 SD^+(x,y) + (F_V - F_A)^2 SD^-(x,y)\right]$$

#### Inner Bremsstrahlung Component



L.P. Alonzi (UVa-PEN)

17<sup>th</sup> of April, 2012 15 / 26













$$\left(\frac{d^2\Gamma_{SD}}{dxdy} = \frac{\alpha}{8\pi}\Gamma_{\pi\to\text{ev}}\left(\frac{m_{\pi}}{m_{\text{e}}}\right)^2 \left(\frac{1}{f_{\pi}}\right)^2 \left[(F_V + F_A)^2 SD^+(x,y) + (F_V - F_A)^2 SD^-(x,y)\right]\right)$$

# Measuring $F_V$ and $F_A$

$$\left(\chi^2 = \sum_{i=\mathrm{A,B,C}} \frac{(B_i^{\mathrm{the}} - B_i^{\mathrm{exp}})^2}{\sigma_i^2}\right)$$

| Me   | asurement (              | BR Evaluation (MeV) |      |                    |              |
|------|--------------------------|---------------------|------|--------------------|--------------|
| Reg. | $E_{\mathrm{e}^+}^{exp}$ | $E_{\gamma}^{exp}$  | Reg. | $E_{\mathrm{e}^+}$ | $E_{\gamma}$ |
|      | > 51.7                   | > 51.7              | А    | > 50               | > 50         |
| П    | 20 - 51.7                | 55.6                | В    | > 10               | > 50         |
| III  | > 55.6                   | 20 - 51.7           | С    | > 50               | > 10         |

L.P. Alonzi (UVa-PEN)

 $17^{th}$  of April, 2012 18 / 26

## **PEN Event Trigger**

Processes to Observe

- $\pi \to \mathrm{e}\nu$
- $\pi \to e \nu \gamma$
- $\pi 
  ightarrow \mu \nu ~(
  ightarrow {
  m e} \nu)$  (norm)
- Traits to Prefer
  - Stopped Pion
  - Early Pion decay times
  - Large secondary energies



To understand the trigger is to understand the experiment.

## **PEN Event Trigger**

Processes to Observe

- $\pi \to \mathrm{e}\nu$
- $\pi \to e \nu \gamma$
- $\pi \rightarrow \mu \nu ~(\rightarrow \mathrm{e} \nu)$  (norm)
- Traits to Prefer
  - Stopped Pion
  - Early Pion decay times
  - Large secondary energies



To understand the trigger is to understand the experiment.

## **PEN** Detector Overview



#### **PEN** Detector Overview





## Extracting $N_{\pi \to e \nu_e \gamma}$

• Raw Data ( $\Delta t \equiv t_{
m e} - t_{\gamma}$ )



## Extracting $N_{\pi \to e \nu_e \gamma}$

- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma}$ )
- Particle ID



- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma}$ )
- Particle ID
- Hard Photons



- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma}$ )
- Particle ID
- Hard Photons
- Signal Region



- Raw Data  $(\Delta t \equiv t_{
  m e} t_{\gamma})$
- Particle ID
- Hard Photons
- Signal Region
- Cross Check  $(t_{
  m e}-t_{\pi})$



- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma}$ )
- Particle ID
- Hard Photons
- Signal Region
- Cross Check  $(t_{
  m e}-t_{\pi})$
- Waveform Cut



- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma})$
- Particle ID
- Hard Photons
- Signal Region
- Cross Check  $(t_{
  m e} t_{\pi})$
- Waveform Cut
- Cross Check Again



- Raw Data ( $\Delta t \equiv t_{
  m e} t_{\gamma})$
- Particle ID
- Hard Photons
- Signal Region
- Cross Check  $(t_{
  m e} t_{\pi})$
- Waveform Cut
- Cross Check Again
- Final Data (Reg. A,B,C)



• Simulation Technique



# Determining $A_{\pi \to e \nu_e \gamma}$

- Simulation Technique
- Degrader Wedges



- Simulation Technique
- Degrader Wedges
- Degrader Pairs



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile
- Beam Momentum



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile
- Beam Momentum
- Wire Chambers



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile
- Beam Momentum
- Wire Chambers
- Plastic Hodoscope



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile
- Beam Momentum
- Wire Chambers
- Plastic Hodoscope
- Csl Calorimeter  $(\pi \rightarrow e)$



- Simulation Technique
- Degrader Wedges
- Degrader Pairs
- Beam Profile
- Beam Momentum
- Wire Chambers
- Plastic Hodoscope
- Csl Calorimeter  $(\pi 
  ightarrow e)$
- Csl Calorimeter  $(\pi \rightarrow \mu)$



## **PEN Run Summary**

Channel event statistics from physics goals assessment, not published results.

| Year | Run Time (days) | $\pi$ -stops (10 <sup>10</sup> ) | $\pi  ightarrow { m e}$ (10 <sup>6</sup> ) | $\pi  ightarrow { m e}\gamma~(10^3)$ |
|------|-----------------|----------------------------------|--------------------------------------------|--------------------------------------|
| 2008 | 111             | 7.5                              | 4.5                                        | 5.8                                  |
| 2009 | 98              | 13.1                             | 8.3                                        | 10.0                                 |
| 2010 | 68              | 16.4                             | 10.3                                       | 12.5                                 |

| Region | Events | P/B  | $\sigma_{ m stat}$ | $\sigma_{ m sys}$ | $\sigma_{ m tot}$ |
|--------|--------|------|--------------------|-------------------|-------------------|
| I      | 291.9  | >200 | 0.0592             | 0.0550            | 0.0808            |
| II     | 421.3  | 100  | 0.0489             | 0.0406            | 0.0636            |
| 111    | 856.8  | 29   | 0.0344             | 0.0402            | 0.0529            |

## Objective Function in the $F_V F_A$ – Plane (2008 data)



L.P. Alonzi (UVa-PEN)

17<sup>th</sup> of April, 2012 25 / 26

## Objective Function in the $F_V F_A$ – Plane (2008 data)



#### Experiment R-05-01 (PEN) collaboration members:

L. P. Alonzi<sup>a</sup>, V. A. Baranov<sup>b</sup>, W. Bertl<sup>c</sup>, M. Bychkov<sup>a</sup>, Yu.M. Bystritsky<sup>b</sup>, E. Frlež<sup>a</sup>, V.A. Kalinnikov<sup>b</sup>, N.V. Khomutov<sup>b</sup>, A.S. Korenchenko<sup>b</sup>, S.M. Korenchenko<sup>b</sup>, M. Korolija<sup>d</sup>, T. Kozlowski<sup>e</sup>, N.P. Kravchuk<sup>b</sup>, N.A. Kuchinsky<sup>b</sup>, M.C. Lehman<sup>a</sup>, D. Mekterović<sup>d</sup>, D. Mzhavia<sup>b, f</sup>, A. Palladino<sup>a, c</sup>, D. Počanić<sup>a</sup>\*, P. Robmann<sup>g</sup>, A.M. Rozhdestvensky<sup>b</sup>, S.N. Shkarovskiy<sup>b</sup>, U. Straumann<sup>g</sup>, I. Supek<sup>d</sup>, P. Truöl<sup>g</sup>, Z. Tsamalaidze<sup>f</sup>, A. van der Schaaf<sup>g\*</sup>, E.P. Velicheva<sup>b</sup>, and V.P. Volnykh<sup>b</sup>

<sup>a</sup>Dept of Physics, Univ. of Virginia, Charlottesville, VA 22904-4714, USA <sup>b</sup>Joint Institute for Nuclear Research, RU-141980 Dubna, Russia <sup>c</sup>Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland <sup>d</sup>Institut "Rudjer Bošković", HR-10000 Zagreb, Croatia <sup>e</sup>Inst. Problemów Jądrowych im. Andrzeja Sołtana PL-05-400 Swierk, Poland <sup>f</sup>IHEP, Tbilisi State University, GUS-380086 Tbilisi, Georgia <sup>g</sup>Physik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

Web page: http://pen.phys.virginia.edu

#### Tree Level Pion Decay



## Mirror Symmetry: $(x \rightarrow -x, y \rightarrow -y, z \rightarrow -z)$



## Mirror Symmetry: $(x \rightarrow -x, y \rightarrow -y, z \rightarrow -z)$

# SPIN WOLNEWOW

#### The Left-Handed Force



 $\mathcal{M} \sim \bar{u}(p)\gamma_{\mu}(1-\gamma^{5})\nu(k)$  Helicity  $\equiv \vec{S} \bullet \vec{P}$ 

Helicity is **not** a Lorentz invariant. Violation  $\sim$  mass

## mTPC Technical Specifications



- Proportional Region: 40x6x40 mm
- Drift Region: 40x40x50 mm
- Drift Gas: 90% He and  $10\% C_2H_6$
- 4000 V across drift region
- Grid: 50  $\mu$ m wires with 1 mm spacing
- Nichrome Anode Wires
  - 40 mm length
  - $\circ$  20  $\mu$ m diameter
  - 10 mm spacing
  - $\circ$  235  $\Omega$  resistance
- CAEN VME digitizer V1720

#### Fabricated by our collaborators from Dubna, Russia





## Waveform Digitization





- x: charge division
- y: drift time
- z: wire location

L.P. Alonzi (UVa-PEN)

#### Results from 2009 Data Run



## 2010 mTPC (Mark II)



#### mTPC Coordinate Calibration



- MWPC coordinates well known
- Calibrate mTPC with MWPC

#### mTPC coordinate Resolution



#### mTPC coordinate Resolution



$$\delta_i = i_2 - i_1 + \frac{(i_0 - i_3)}{3}$$
$$\sigma_i = \frac{RMS_{\delta_i}}{\sqrt{1^2 + 1^2 + (1/3)^2 + (1/3)^2}}$$

 $\Rightarrow \sigma_x < 1.3 \text{ mm (charge division)} \\\Rightarrow \sigma_y < 0.35 \text{ mm (drift time)}$ 

#### Target Waveform Digitization



## Background Suppression



L.P. Alonzi (UVa-PEN)

17<sup>th</sup> of April, 2012 38 / 26

## **Background Suppression**

Before





