The PEN Experiment at PSI: Testing Lepton Universality

Anthony Palladino for the PEN Collaboration

University of Virginia Universität Zürich Paul Scherrer Institute

Seminar on Particle and Astrophysics; Zürich, Switzerland 14 April 2010

PAUL SCHERRER INSTITUT

1/51

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

Outline

Introduction

Theory of Pion Decay Review of Helicity Suppresion Physics Motivation Lepton Universality

PEN Experiment

Previous Measurements TRIUMF and PSI PEN Detector

Analysis

 $\begin{array}{ll} \mbox{Maximum Likelihood Analysis} \\ \mbox{Observables, Processes, and Probability Density Functions} \\ \mbox{Waveform Fitting} \\ \mbox{Pulse Shaping and the Modified } \chi^2 \mbox{Objective Function} \end{array}$

Conclusions

Introduction Theory of Pion Decay

Theory of π^+ Decay

Quark Content: $\pi^+ = u\overline{d}$

Mass: $m_{\pi^+} = 139.6 \text{ MeV}$

Lifetime: $au_{\pi^+} = 26.03$ ns

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 3 / 51

Theory of π^+ Decay

Why is $\pi^+ \rightarrow e^+ \nu_e$ a rare decay? Helicity Suppression

Conservation of Angular Momentum: In π rest frame, the π has S = 0. The cutoring lepton pair (each arin 1/2) mu

The outgoing lepton pair (each spin 1/2) must combine to give S = 0

- both Right-Handed (Positive Helicity), or
- both Left-Handed (Negative Helicity)

Property that if m = 0:

- All S = 1/2 particles are Left-Handed (Negative Helicity)
- All S = 1/2 antiparticles are Right-Handed (Positive Helicity)

 \Rightarrow The negative helicity ν_e forces the e^+ into a negative helicity state. But,

$$m_{e^+} << m_{\mu^+}$$

PAUL SCHERRER INSTITUT

4 / 51

Introduction Theory of Pion Decay

Theory of π^+ Decay

Helicity:

Correct Helicity State
$$= \frac{1}{2} + \frac{1}{2}\frac{v}{c}$$

Wrong Helicity State
$$= \frac{1}{2} - \frac{1}{2}\frac{v}{c}$$

For v = c, fraction "Wrong" = 0.

For a given *E*, $v_e > v_\mu \Rightarrow e$ is less likely to have wrong helicity. $\frac{LH(e^+)}{LH(\mu^+)} \approx 3.2 \times 10^{-5}$

π Decay Phase Space:

Since the e^+ is lighter, the $\pi^+ \rightarrow e^+\nu_e$ decay has a larger phase space than the $\pi^+ \rightarrow \mu^+\nu_\mu$ decay. \Rightarrow gives a factor ~ 3.3

$$\frac{\Gamma(\pi^+ \rightarrow e^+ \nu_e)}{\Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu)} \approx 3.3 \times (3.2 \times 10^{-5}) \approx 10^{-4}$$

14 Apr '10 5 / 51

Introduction Theory of Pion Decay

Theory of π^+ Decay

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI: Testing Lepton Universality 14 Apr '10

r'10 6 / 51

The PEN Experiment

• Precision Measurement of the $\pi^+
ightarrow e^+
u$ branching ratio.

$$B = \frac{\Gamma(\pi^+ \to e^+ \nu_e(\gamma))}{\Gamma(\pi^+ \to \mu^+ \nu_\mu(\gamma))} = \left(\frac{g_e}{g_\mu}\right)^2 \left(\frac{m_e}{m_\mu}\right)^2 \frac{\left(1 - m_e^2/m_\mu^2\right)^2}{\left(1 - m_\mu^2/m_\pi^2\right)^2} \left(1 + \delta R\right)$$

$$B_{\mathsf{calc}} = egin{cases} (1.2352 \pm 0.0005) imes 10^{-4} \ (1.2354 \pm 0.0002) imes 10^{-4} \ (1.2352 \pm 0.0001) imes 10^{-4} \end{cases}$$

Marciano & Sirlin, [PRL **71**, 3629 (1993)] Finkemeier, [Phys. Lett. B **387**, 391 (1996)] Cirigliano & Rosel, [PRL **99**, 231801 (2007)]

7 / 51

 $B_{
m exp} = (1.230 \pm 0.004) imes 10^{-4}$ Experiment World Average (Current PDG)

Lepton Universality: W. Loinaz, et. al., Phys. Rev. D 65, 113004 (2004) [hep-ph/0403306]

 $\left(rac{g_e}{g_\mu}
ight)_\pi = 1.0021 \pm 0.0016$

$$\begin{array}{|c|c|c|c|c|c|c|} \hline \text{Our Goal:} \quad \frac{\Delta B_{exp}}{B_{exp}} \leq 5 \times 10^{-4} \end{array} \end{array} \begin{array}{|c|c|c|c|c|} \hline \text{PDG:} \quad \frac{\Delta B_{exp}}{B_{exp}} \sim 3.3 \times 10^{-3} \end{array} \\ \hline \begin{array}{|c|c|} \hline \text{Figure 1} & \text{Figure 1$$

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

Introduction Physics Motivation

Lepton Universality

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 8 / 51

Deviations from SM Prediction

A Branching Ratio that is different from the SM prediction could be caused by:

- lepton non-universality,
- charged Higgs particles in theories with more Higgs than SM,
- pseudoscalar leptoquarks in theories with dynamical symmetry breaking,
- vector leptoquarks in Pati-Salam type GUT's,
- SUSY partner particles appearing in loop diagrams,
- non-zero neutrino masses,
- Majorons.

PAUL SCHERRER INSTITUT

Mass Limits on Leptoquark and Supersymmetric Particles

A measurable deviation in B from the SM prediction is clear evidence of physics beyond the SM, sensitive to mass scales of many TeV.

Particle		Current Bounds	Projected Mass Sensitivity
Charged Higgs Boson	m _H	> 2 TeV	> 6.9 TeV
Pseudoscalar Leptoquark	m_p	> 1.3 TeV	> 3.8 TeV
Vector Leptoquark	M_G	> 220 TeV	> 630 TeV

Following the calculations in Shanker, NP B204 (82) 375

PAUL SCHERRER INSTITUT

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

PEN Experiment Previous Measurements

History of the Measurement

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

r'10 11 / 51

Paul Scherrer Institute Villigen, Aargau, Switzerland

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

Apr '10 12 / 51

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI: Testing Lepton Universality

14 Apr '10 13 / 51

PEN Detector

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

14 / 51

Beam Counter, Focusing Magnets, and Detectors

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

10 15 / 51

Example Calibration/Stabilization

 Checking the stability of the TGT position over time.

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10 16 / 51

PEN Data Analysis

Strategy:

Determine the most likely value of the $\pi^+ \rightarrow e^+ \nu_e$ branching ratio using a Maximum Likelihood Analysis.

Benefits:

• Provides a unique, unbiased, minimum variance estimate (for a large enough sample).

PAUL SCHERRER INSTITU

17 / 51

- Practical, tractable approach via product p.d.f.'s
- Use as much data as possible to determine *B*; loose cuts.

Complication:

• Critical dependence on p.d.f.

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

Maximum Likelihood Analysis

One likelihood function encompassing many observables and processes.

$$\mathcal{L}\left(\mathbf{x}; \overrightarrow{N}\right) = \prod_{i=1}^{\mathcal{N}} \left[\sum_{m=1}^{M} f_m\left(\overrightarrow{\mathbf{x}}_i; N_m\right)\right]$$

where \mathcal{N} is the number of events, and

(\overrightarrow{x}_i) are the observables

- Time between π^+ and e^+
- Total Positron Energy
- "Probability" of Pile-up "P" _{pile-up} = ln $\left[\sum_{k=1}^{\ell} e^{-|dt_k|/\tau_{\mu}}\right]$

Pion Decay Vertex

(N_m) normalization of process m

- $N_{\rm p2e}, \pi^+ \rightarrow e^+$ (p2e)
- $N_{
 m mich}, \ \pi^+
 ightarrow \mu^+
 ightarrow e^+$ (Michel)
- N_{acc}, Accidentals / Pile-up
- N_{dif}, Pion Decays-in-flight
- N_P, Proton
- N₂, etc.

• etc.

Analysis Maximum Likelihood Analysis

Model: Probability Density Functions $\mathcal{L}\left(\overrightarrow{E}, \overrightarrow{t}; N_{p2e}, N_{mich}, N_{acc}, N_{dif}\right)$

Maximization Techniques:

- Binned vs. Unbinned
- Maximum Likelihood Fit.
- χ^2 Fit
- Negative Log Likelihood, $\ell = -\ln \mathcal{L}$

Anthony Palladino (UVa/UZh/PSI)

Measurement: Data

Variable Binning \rightarrow Improvement in calculation speed.

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 20 / 51

PAUL SCHERRER INSTITUT

Techniques: Negative Log Likelihood

$$\ell = - {
m ln} {\cal L}$$
 ${\cal L} = e^{-\ell}$ $N_{
m p2e}$ vs. $N_{
m michel}$

Use of standard software libraries MINUIT, MIGRAD, HESSE, and MINOS on ℓ . Use of ROOFIT and ROOSTATS to set up model p.d.f.

PAUL SCHERRER INSTITUT

Analysis Maximum Likelihood Analysis

Maximum Likelihood Analysis

- Still in very early stages
- Critical dependence on p.d.f.'s

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI: Testing Lepton Universality 14 Apr '10 22 / 51

Analysis Maximum Likelihood Analysis

Maximum Likelihood Analysis

- Still in very early stages
- Critical dependence on p.d.f.'s

How do we determine the p.d.f's?

- Obtain guidance from GEANT4 simulation
- Use the measurement data itself
 - Make cuts to isolate each process
 - Use a target waveform analysis

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10 22 / 51

PAUL SCHERRER INSTITUT

Waveform Fitting Analysis

Target Waveform Analysis

Why?

- To provide cuts useful for distinguishing the various processes
- Potential new observables for likelihood analysis •

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI: Testing Lepton Universality

14 Apr '10 23 / 51

Acqiris Digitizer

Acqiris High Speed 10-bit PXI/CompactPCI Digitizer, Model DC282 4 Channels, each with 2 GS/s

Digitized PMT waveforms from three beamline detectors:

- Upstream Beam Counter
- Active Degrader
- Active Target

PAUL SCHERRER INSTITUT

14 Apr '10 24 / 51

Response Functions

Figure: System Response Functions (Waveforms).

PAUL SCHERRER INSTITUT

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI: Testing Lepton Universality 14 Apr '10 25 / 51

Pulse Shaping

Developed an iterative program to create a digital adaptive filter.

Input:

- Averaged system response waveform array, w_i
- Desired waveform array, *w̃_i*

Output:

 Shaping array ("Filter"), s_i

Pulse Shaping: $\tilde{w}_i =$

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 /

14 Apr '10 26 / 51

Pulse Shaping

Figure: Pulse Shaping Filter.

PAUL SCHERRER INSTITUT

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 27 / 51

Target Waveform Fit Parameters

Pulse	Position in time (bin)	Amplitude
π^+	Known (from Degrader)	Known (from TOF and $E_{B0} + \sum E_{deg}$)
μ^+	Unknown	Known
e ⁺	Known (from Plastic Hod.)	Known (from tracking)

Pulse	Position in time (bin)	Amplitude
π^+	$\sigma \sim 110~{ m ps}$	$\sigma\sim$ 470 keV $_{ee}$
μ^+	Unknown	$\sigma \sim 100~{ m keV}_{ee}$
e ⁺	$\sigma\sim$ 250 ps	$\sigma\sim$ 900 keV_{ee}

28 / 51

$\pi^+ \, \, {\rm Time}$

Determined from timing of π in degrader. $\sigma \sim 69.7 \text{ ps}$

π^+ Amplitude

Determined from TOF and the energy deposited in the degrader. $\sigma \sim 0.47 \ {\rm MeV}_{ee}$

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 29 / 51

e⁺ Time

Determined from the time of the Plastic Hodoscope.

 $\sigma < 250 ~\rm ps$

e^+ Amplitude

Determined from the distance e^+ travels in the target. Requires knowledge of the positron decay vertex.

- π^+ entry position from pion tracking.
- e⁺ track from MWPC, Plastic Hodoscope, and Csl Calorimeter.

 $\sigma\sim 0.9~{\rm MeV}$

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 30 / 51

μ^+ Time

Determined by the subtracting the predicted π^+ and e^+ pulses.

Results in non-gaussian prediction resolution:

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14

14 Apr '10 31 / 51

μ^+ Amplitude

Known precisely since it is a two body decay. $\sigma \sim 200 \text{ keV}_{ee}$ RMS/mean = 5.1%

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

or '10 32 / 51

Waveform Fitting

Modified χ^2 Function:

$$\chi^2 = \frac{1}{n_{\rm d.o.f.}} \sum_{i=1}^n \left(\frac{\tilde{w}_i^{\rm Fit} - \tilde{w}_i}{\sigma_{\tilde{w}}}\right)^2 + \left(\frac{E_{\pi^+}^{\rm Fit} - E_{\pi^+}^{\rm Pred}}{\sigma_{E_{\pi^+}}}\right)^2 + \left(\frac{E_{e^+}^{\rm Fit} - E_{e^+}^{\rm Pred}}{\sigma_{E_{e^+}}}\right)^2$$

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality

Waveform Fitting

Modified χ^2 Function:

$$\chi^2 = \frac{1}{n_{\rm d.o.f.}} \sum_{i=1}^n \left(\frac{\tilde{w}_i^{\rm Fit} - \tilde{w}_i}{\sigma_{\tilde{w}}} \right)^2 + \left(\frac{E_{\pi^+}^{\rm Fit} - E_{\pi^+}^{\rm Pred}}{\sigma_{E_{\pi^+}}} \right)^2 + \left(\frac{E_{e^+}^{\rm Fit} - E_{e^+}^{\rm Pred}}{\sigma_{E_{e^+}}} \right)^2$$

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 34 / 51

Waveform Fitting Results χ² 3 peak vs. χ² 2 peak (below 60 MeV) χ² 3 peak vs. χ² 2 peak (above 60 MeV) x² 3 peak x² 3 peak χ² 20 χ² 2 peak χ² 2 peak $\Delta \chi^2$ vs. positron energy $\Delta \chi^2$ vs. decay time ∇^{2}_{λ} ¥ -10 -20 -30 -30 **AUL SCHERRER INSTITUT** -40<mark>1</mark> -40 30 40 50 positron energy (MeV) 20 30 40 decay time (ns)

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 35 / 51

Waveform Fitting Results

PAUL SCHERRER INSTITUT

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 36 / 51

Waveform Fitting Results

A source of systematic uncertainties:

• Positron Energy in the target

Let's revisit the detector...

The PEN Apparatus: 2008

stopped π⁺ beam
active target counter
240-det. pure Csl calo.
central tracking
digitized PMT signals
stable temp./humidity

Anthony Palladino (UVa/UZh/PSI) The PEN Ex

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 38 / 51

The PEN Apparatus: 2008

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

The PEN Apparatus: 2008 Novel, low cost, four-piece, Wedged Degrader. (UZh: P. Robmann)

Pros:

• x, y position sensitivity of beam π^+

Cons due to thicker degrader (13mm as opposed to 5mm):

- higher beam momentum required \Rightarrow more nuclear reactions in target.
- more material increases multiple scattering $\Rightarrow \pi$ position resolution suffers.

39 / 51

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

The PEN Apparatus: 2008

PAUL SCHERRER INSTITUT

41 / 51

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

PEN Detector 2009

The PEN Apparatus: 2009

stopped π⁺ beam
active target counter
240-det. pure Csl calo.
central tracking
digitized PMT signals
stable temp./humidity

42 / 51

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10

The PEN Apparatus: 2009

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10 42 / 51

The PEN Apparatus: 2009

mTPC Technical Specifications

C6

C7

C8

C9

C10

- Proportional Region: 40x6x40 mm
- Drift Region: 40x40x50 mm
- Drift Gas: 90% He and 10% C₂H₆
- 4000 V across drift region
- Grid: 50 μ m wires with 1 mm spacing
- Nichrome Anode Wires
 - 40 mm length
 - \circ 20 μ m diameter
 - 10 mm spacing
 - \circ 235 Ω resistance
- CAEN VME digitizer V172000000

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI: Testing Lepton Universality

Cathode

Grid

A3 A4

A1

C1 C2

C3

C4

C5

14 Apr '10 44 / 51

Waveform Digitization

- \circ Red: Left
- Blue: Right

Pion Tracking:

- x: charge division Relative amp. left : right
- y: drift time Time of rising edge
- z: wire location Physical mounting

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 45 / 51

Results from 2009 Data Run

Anthony Palladino (UVa/UZh/PSI)

The PEN Experiment at PSI:Testing Lepton Universality

14 Apr '10 47 / 51

Another systematic uncert.: Decays in Flight (DIF)

 ${\sf DIF}\sim {\it O}(10^{-4})$

What happens if the π^+ decays before it stops?

In some cases this will cause a $\pi^+ \to \mu^+ \to e^+$ event to look like a $\pi^+ \to e^+$ event.

- forward DIF μ^+ go through the target
- backward DIF μ^+ don't have enough energy to appear as a π^+ .
- it turns out that μ^+ traveling at $\theta\gtrsim 24^\circ$ mimic π^+ in terms of energy deposition.

PAUL SCHERRER INSTITU

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI: Testing Lepton Universality 14 Apr '10 48 / 51

π Decays-in-flight

GEANT4 Simulation (M. Bychkov)

PEN Measurement

Decays-in-flight shown in red.

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality 14 Apr '10 49 / 51

Conclusions

Conclusion

Year 2006 (Beam Development Phase):

• Detector Refurbishment (Same detector from PiBeta Experiment).

Year 2007 (Experiment Development Phase):

- Many new components and upgrades.
- Recorded $\sim 3 imes 10^5 \pi^+
 ightarrow e^+
 u_e$ decays

Year 2008 (1st Production Phase):

• Use of wedged degrader for π tracking.

Year 2009 (2nd Production Phase):

• Use of mini-TPC for improved π tracking.

2008 & 2009 runs resulted in $\gtrsim 1.24 \times 10^7$ recorded $\pi^+ \rightarrow e^+\nu_e$ decays $\Rightarrow (\delta B/B)_{stat} < 2.84 \times 10^{-4}$ (Recall Goal: $(\delta B/B)_{stat} + (\delta B/B)_{sys} < 5 \times 10^{-4}$)

Year 2010 (3rd Production Phase):

• Goal of $\sim 25 imes 10^6$ more $\pi^+
ightarrow e^+
u_e$ decays

Anthony Palladino (UVa/UZh/PSI) The PEN Experiment at PSI:Testing Lepton Universality

PAUL SCHERRER INSTITUT

50 / 51

14 Apr '10

Conclusions

PEN Experiment Collaboration Members:

L.P. Alonzi,^a V. A. Baranov,^c W. Bertl,^b M. Bychkov,^a Yu.M. Bystritsky,^c E. Frlež,^a V. Kalinnikov,^c N.V. Khomutov,^c A.S. Korenchenko,^c S.M. Korenchenko,^c M. Korolija,^f T. Kozlowski,^d N.P. Kravchuk,^c N.A. Kuchinsky,^c M.C. Lehman,^a D. Mekterović,^f D. Mzhavia,^{c,e} A. Palladino,^{a,b} D. Počanić,^{a*} P. Robmann,^g O.A. Rondon-Aramayo,^a A.M. Rozhdestvensky,^c T. Sakhelashvili,^b V.V. Sidorkin,^c U. Straumann,^g I. Supek,^f Z. Tsamalaidze,^e A. van der Schaaf,^{g*} E.P. Velicheva,^c V.V. Volnykh,^c

^aDept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USA ^bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^cJoint Institute for Nuclear Research, RU-141980 Dubna, Russia ^dInstitute for Nuclear Studies, PL-05-400 Swierk, Poland ^eIHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia ^fRudjer Bošković Institute, HR-10000 Zagreb, Croatia ^gPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

blue = Graduate Student

 $\star = Spokesperson$

PEN Web page: http://pen.phys.virginia.edu

PAUL SCHERRER INSTITUT