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Abstract

The PEN experiment at the Paul Scherrer Institute in Switzerland aims to measure the positronic

pion decay branching ratio to an unprecedented relative precision of 0.05%. The measurement tests

the existence of lepton universality and puts constraints on several theories beyond the Standard

Model of particle physics. This dissertation will first describe the experimental configuration and

data collection during the PEN experiment. Focus is placed on the developmentof data analysis

tools including calibrations, event reconstruction algorithms, and a maximum likelihood analysis

framework designed specifically for this experiment. The 8×105
π
+ → e+νe events observed in

2008 were used in this study to obtainRπe2 = [1.112±0.002(stat.)]×10−4, where the central value

is still intentionally blinded with an unknown multiplicative random number. Using only a small

fraction of the PEN data, our statistical uncertainty inRπe2 is already smaller than the combined

(statistical and systematic) uncertainty in the experimental world average. Including the estimated

20×106 additionalπ+ → e+νe events from 2009 and 2010 will further reduce the uncertainty on

this measurement.
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Before I speak, I have something
important to say.

Groucho Marx

Chapter 1

Introduction

1.1 The Standard Model of Particle Physics

It has been established that the Standard Model (SM) is the authoritative description of the fun-

damental laws of nature. The theory is so powerful that nearly all of its predictions have been

experimentally verified. It is an ever changing model that adapts to new measurements in order to

adhere to the physical world.

Despite its success, the Standard Model is not complete. There exists mathematical structure in

the model that is not fully understood, and there are physical phenomenawhich the theory cannot

predict. Theorists are hard at work developing extensions Beyond the Standard Model (BSM) which

attempt to explain discordant observations. This dissertation describes anexperiment conducted to

both test SM predictions, such as lepton universality, and narrow down the list of possible BSM

theories by giving, for example, limits on the masses of hypothetical particles.

According to the current SM, all matter can be built from fundamental spin-1/2 (fermion) parti-

cles called quarks and leptons (Table 1.1(a)). The interactions between these fermions are described

1
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Table 1.1: Periodic Tables of Elementary Particles.(a) shows the fermions organized into the three gener-
ations of matter,(b) shows the force mediating gauge bosons, and(c) shows the yet to be discovered Higgs
boson which gives rise to the masses of all massive particles.

(a)

Flavor Generation

I II III

u (up) c (charm) t (top)
Quarks

d (down) s (strange) b (bottom)
e (electron) µ (muon) τ (tau)

Leptons
νe (electron neutrino) νµ (muon neutrino) ντ (tau neutrino)

(b)

Force Mediator

Strong G (gluon)
Electromagnetic γ (photon)
Weak W±, Z0 (charged,neutral weak boson)
Gravitational g (graviton)

(c)

Mass Generator

H (Higgs boson)

by the exchange of characteristic integer spin (boson) “force mediator”particles. There are only

four known fundamental interactions that occur in nature: electromagnetic, weak nuclear, strong

nuclear, and gravitational. The gauge bosons corresponding to each of these forces are listed in

Table 1.1(b). The SM does not describe the gravitational interaction, which fortunately is negligible

on the subatomic scale.

The SM also explains the origin of particle masses via the yet to be discoveredHiggs boson.

Extensive searches for the elusive Higgs particle are underway at particle physics laboratories world-

wide.
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1.2 The Pion

In Hideki Yukawa’s 1935 paper [71] he suggested that experimentalistsshould search for a yet

undiscovered particle that mediated the nuclear force. Using the range ofnuclear forces, he pre-

dicted the mass of the new particle to be somewhere between the light electron andthe heavy nu-

cleon. It was supposed to be the force carrier, being emitted and absorbed by protons and neutrons,

thereby explaining the stability of the atomic nucleus by accounting for the short-ranged attraction

between its constituents. Shortly thereafter, in 1937, Carl D. Anderson and his student Seth H. Ned-

dermeyer found a particle in cosmic radiation with the mass and disintegration properties that one

would expect for the Yukawa particle [53, 54]. Their discovery was confirmed almost immediately

by J.C. Street and E.C. Stevenson who gave a mass value of 130 electron masses with a 25% uncer-

tainty [69]. Four months later, Nishina, Takeuchi, and Ichimiya published evidence of a positively

charged particle with a mass from 180 to 260 electron masses [55]. The following year, Nishina

et al. discovered a negatively charged particle with mass 170±9 me and reduced the uncertainty on

their estimate of the mass of the positively charged particle to 180±20 me [56]. This intermediate-

massed particle was then referred to as a “mesotron” and later shortened tomeson, originating from

the Greek word for intermediate, “mesos”.

Figure 1.1: A photograph of Hideki
Yukawa (left) and Ćesar Lattes.

If a meson is to explain the nuclear interaction then it should

be readily absorbed by protons and nuetrons, and therefore by

matter. In 1947, nearly a decade later, three Italian physicists,

Marcello Conversi, Ettore Pancini and Oreste Piccioni, observed

that the mesons found in cosmic radiation often passed by sev-

eral hundred atomic nuclei without interacting [24]. Enrico

Fermi, Edward Teller, and Victor Weisskopf, introducing the symbolµ for mesotron, explained
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that the decay time of these negative particles in matter was twelve orders of magnitude longer than

the time it should take the nuclear forces to capture Yukawa’s particle [35].These properties do not

follow Yukawa’s prediction.

Meanwhile in 1947, a group lead by Cecil F. Powell was studying tracks left by charged particles

in photographic nuclear emulsion plates placed at the top ofPic du Midi in the French Pyrenees.

Giuseppe Occhialini and Ćesar Lattes discovered that two distinct types of mesons were present in

the plates. One meson would gradually slow down and stop, and at the end ofits track a new meson

appeared [58, 43]. Lattes travelled to the Bolivian Andes and placed several nuclear emulsion plates

at the top of Mount Chacaltaya, 5500 m above sea level. Analysis of theseplates revealed that one

of the mesons was 30–40% heavier than the other one [44]. The primary meson (now calledπ

meson, or pion) was heavier and disintigrated into a secondary meson (µ meson, or muon)1. It turns

out that the muon was the known meson from the experiments of Anderson and Neddermeyer. This

new, previously undiscovered,π meson, however, was shown to readily interact with nuclei and had

the characteristic properties according to Yukawa’s theory.

We have come a long way in our understanding of the pion since then. We nowknow that the

pion is a meson consisting of two quarks from the first flavor generation. The pion can be charged,

π
±, or neutral,π0. For the remainder of this dissertation, we will restrict ourselves to theπ

+

due to experimental practicalities. Negatively charged pions are absorbed by nearby atomic nuclei

with almost 100% probability due to the attractive nature of their opposite electriccharges, and

are therefore more difficult to deal with. On the contrary, positively charged pions are essentially

shielded from nuclei by the atom’s electrons, and such complications are reduced.

Theπ+, composed of one up (u) and one anti-down
(

d
)

quark, has a lifetime of 26.033 ns and

1The muon is now classified as a lepton, not a meson.
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Table 1.2: Decay modes and decay rates of theπ
+ [33].

Decay Mode Decay Rate
π
+ → µ

+
νµ Γ1 = 0.9998770(4)

π
+ → µ

+
νµγ Γ2 = 2.00(25)×10−4

π
+ → e+νe Γ3 = 1.230(4)×10−4

π
+ → e+νeγ Γ4 = 7.39(5)×10−7

π
+ → π

0e+νe Γ5 = 1.036(6)×10−8

π
+ → e+νee+e− Γ6 = 3.2(5)×10−9

a mass of 139.57 MeV [33]. The pion decays when the u andd quarks annihilate, producing a

W+ boson. This weak gauge boson then procedes to create particles along one of several allowed

modes. This process is called the weak decay mode of the pion (Table 1.2). Of particular interest

to this thesis are the 2-body decay modes, commonly denotedπℓ2 (with decay ratesΓ1 andΓ3) in

which theπ+ produces a lepton-antilepton pair, whereℓ= e+,µ+, as shown in Figure 1.2. For the

experiment described herein, theπ+ → π
0e+νe decay mode is possible but very rare. SinceΓ5 is

∼1/5 of the desired uncertainty in our measurement, we’ll ignore this decay mode in the initial PEN

data analysis.

gℓ
W+

νℓ

ℓ+

u

d
π
+ {

Figure 1.2: The lowest level (tree) Feynman diagram for theπ
+ → ℓ+νℓ decay modes.

1.3 Review ofπ+ → e+νe Experiments

The π
+ → e+νe decay mode was first discovered at CERN in 1958 [32, 40]. A branching ra-

tio measurement for this mode wasn’t made until 1960 by Anderson et al., whomeasuredRπe2 =



CHAPTER 1: INTRODUCTION 6

(1.21±0.07)×10−4 [7]. Four years later DiCapua et al. pushed the uncertainty down toRπe2 =

(1.273±0.028)×10−4 [28].

µ
+ gµ

νµ

νe

e+

ge
W+

Figure 1.3: Feynman diagram for the Michelµ → eνν decay, named after Louis
Michel, who first described the decay positron’s energy spectrum in detail.

In practice, a typical measurement involves measuring the decay time and energy of the positron

emitted from either theπ→ e decay or theπ→µ→ e sequential decay chain. The sequential Michel

decay is shown in Figure 1.3, where theµ
+ emits a W+ and is transformed into a muon antineutrino.

The W+ then creates a lepton-antilepton pair. The positron from the two-body decay, π → eν, is

mono-energetic atmπ/2= 69.8 MeV. In contrast, the positron from the sequenceπ→ µν followed

by the 3-body decayµ→ eνν has a continuous energy spectrum from 0 tomµ/2= 52.8 MeV. This

characteristic energy spectrum is often called the Michel spectrum, named after Louis Michel who

first described and parameterized theµ→ eνν decay in detail [50].

The first precise measurement was made in 1983 when Bryman et al. employed a NaI(Ti) crystal

calorimeter sensitive to both charged particles and photons [15]. They performed two seperate

analyses on the data. The first method was the so-called “2-bin” method developed by DiCapua et

al. for the analysis of the 1964 experiment. The energy spectra for the positrons were collected in

two identical time intervals, one starting atti and the other atti + ts after the pion stop time. Sincets

is long compared to the pion lifetime, the second interval contained essentially only positrons from
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theπ→ µ→ e chain. The branching ratio was then calculated as

Rπe2 =
λµ

λπ−λµ

Nπ→e{1−exp[−(λπ−λµ) ts]}
N(2)
π→µ→eexp(λµts)−N(1)

π→µ→e

= (1.218±0.014)×10−4 (1.1)

whereλπ andλµ are the pion and muon decay rates defined asλπ = 1/τπ andλµ = 1/τµ.

Their second method was a simple fit to the decay time distribution of the positrons,obtaining

the amplitudes of theπ → e andπ → µ → e components. The second method resulted inRπe2 =

Aπ→e/Aπ→µ→e = (1.219±0.014)×10−4.

A more refined measurment came in 1992 by the same collaboration at TRIUMF [11]. They

measuredRπe2 by a simultaneous fit to the positron decay time spectra for events with positron en-

ergy above and below 56.4 MeV. The energies were recorded with the “TINA” NaI(Ti) 460 mm

diameter× 510 mm long cylindrical crystal calorimeter. Several multiplicative systematic correc-

tions of order∼1% were applied to obtain

Rπe2 = [1.2265±0.0034(stat.)±0.0044(syst.)]×10−4 . (1.2)

The third and most recent precise measurement was performed at the Paul Scherrer Institute

and published in 1993. Czapek et al. [25] considered only events with positron decay time between

7.5 ns and 200 ns after the pion stop time. They considered the total energy spectrum, i.e., the energy

deposited in the target by the pion, possible muon, and the positron, plus the total energy deposited

in the BGO calorimeter. The number ofπ → e events was determined using three windows inETotal.

The majority ofπ → e events were contained in the region 83.5≤ ETotal ≤ 101 MeV. The amount

of π → e events below 83.5 MeV was determined using aGEANT3 simulation. The region above
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Branching Ratio
0.1 0.11 0.12 0.13 0.14

-310×

)1993Czapek (

)1992Britton (

)1986Bryman (

)1964DiCapua (

)1960Anderson (

Figure 1.4: Historical representation
of Rπe2 measurements. The solid curve
is the probability distribution of the
branching ratio using the three most
recent measurements, as is used in the
current Particle Data Group estima-
tion of the branching ratio [33]. The
dashed curve gives the probability dis-
tribution using all five measurements.

101 MeV essentially contained only events for which the pion underwent a strong interaction in the

target. The total number of pion decays was found using a normalization trigger inside the same 7.5

to 200 ns time window. They obtained the value

Rπe2 = [1.2346±0.0035(stat.)±0.0036(syst.)]×10−4 . (1.3)

The Particle Data Group [33] combined these three most recent measurements of Rπe2 to give

the world average

RPDG
πe2

= (1.230±0.004)×10−4 , (1.4)

which has remained unchanged for nearly two decades.

1.4 Review ofπ+ → e+νe Theory

The theory behind theπe2 decay is described in the Standard Model with extraordinary precision.

This section will examine the theoretical description in detail. More information can be found in
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the report [12] and the references quoted within.

The differential decay rate for theπℓ2 decay (withℓ= e orµ) can be given by,

dΓ =
1

2mπ

|M|2 1
EℓEν

d3pℓ
(2π)3

d3pν
(2π)3

(

2π4)δ4(q− pℓ− pν) , (1.5)

wheremπ is the pion mass,q, pℓ, andpν are the four-momenta of the pion, lepton, and neutrino,

respectively, andM is the matrix element in the (V −A) theory [49],

M =
iGF√

2
〈0|{Vλ(0)−Aλ(0)}|π〉uℓγλ (1− γ5)vν , (1.6)

whereGF = 1.16639× 10−11 MeV−2 is the Fermi coupling constant. Since the pion is a pseu-

doscalar particle and due to the lack of available axial-vector operators, we can determine on

the grounds of Lorentz invariance that〈0|Vλ(0)|π〉 = 0. Similarly, we find that〈0|Aλ(0)|π〉 =

i fπ
(

q2
)

qλ, where fπ
(

q2
)

= fπ
(

−m2
π

)

≡ fπ = 130.7 MeV is the pion decay constant.

It follows that when using the Dirac equationu
(

/p−mℓ

)

= 0, where/p ≡ γλ pλ, we obtain the

matrix element

M =
−GF fπ√

2
mℓuℓ (1− γ5)vν . (1.7)

After summing over final spin states, the differential decay rate becomes,

dΓ =
G2

F f 2
πm2

ℓ

2mπ (2π)2

pℓpν
EℓEν

d3pℓd
3pνδ4(q− pℓ− pν) , (1.8)

and upon integrating over lepton momenta the total decay rate for theπ→ ℓνℓ decay becomes,

Γ =
G2

F f 2
πm2

ℓ

8πm3
π

(

m2
π−m2

ℓ

)2
. (1.9)



CHAPTER 1: INTRODUCTION 10

This equation clearly demonstrates that the decay rate is proportional to the square of the lepton

mass. This proportionality is the physical consequence of the(1− γ5) term in (1.7), which is known

as the helicity projection operator for massless leptons. This operator allowsonly left-handed mass-

less particles and right-handed anti-particles. Ifmℓ = 0, angular momentum conservation would

prohibit theπ → ℓνℓ decay channels formν = 0. Since the positron and muon are massive, both

positive and negative helicity states are mixed by an amount proportional to their mass, leading to

non-zero decay rates.

π
+

µ
+νµ

Figure 1.5: A π
+ decaying at rest. The thin arrows represent the particle momenta, while the thick arrows

represent their helicity.

To put this situation into perspective, consider theπ
+ decaying at rest as depicted in Figure 1.5.

The 106.7 MeV muon wants to be right-handed; the 0.5 MeVreally wants to be right-handed; but

the< 10−6 MeV neutrino essentially forces them to both be left-handed. Akin to polarization, we

may define,

“Helicity Conservation” :
1
2
+

1
2

v
c

“Helicity Violation” :
1
2
− 1

2
v
c

.

(1.10)

For v= c we have zero probability of the particle “violating” helicity. Now for a given energy, the

positron will have a much greater velocity than the muon due to their relative masses. Taking the

ratio of the likelihood of each particle “violating” helicity we find,

Left-handed e+

Left-handedµ+
≈

1
2 +

1
2

ve
c

1
2 +

1
2

vµ
c

≈ 3.2×10−5 (1.11)
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This severe reduction in what would otherwise be the main decay channel for the pion is known as

helicity suppressionand is of key importance to the subject of this thesis.

Considering phase-space alone, the positronic decay channel,π→ eνe, would be∼ 3.3 times

more likely than the muonic decay mode. Combining these two rough calculations gives an order-

of-magnitude estimate of theπe2 branching ratio to be,

Γ(π→ eνe)

Γ(π→ µνµ)
= 3.3×

(

3.2×10−5)∼ 10−4 , (1.12)

where a branching ratio is defined to be a ratio of decay rates.

Using (1.9) the branching ratio can be calculated,

RSM
πe2

=
Γ(π → eνe)

Γ(π → µνµ)
=

f e
π

2m2
e

f µπ
2m2

µ

(

m2
π−m2

e

)2

(

m2
π−m2

µ

)2 =
f e
π

2

f µπ
2

(

1.283×10−4) . (1.13)

The principle of electron-muon universality in pion decay holds under the assumptions that the basic

interaction current is of theV −A type if f e
π = f µπ .

Using the universalV −A theory, Berman [8] and Kinoshita [42] showed that the branching

ratio (1.13) is incomplete and requires substantial modifications due to radiative corrections. These

corrections depend onmℓ. Radiative corrections originating from the emission of real photons, Inner

Bremsstrahlung (IB), are shown in Figure 1.8. Corrections to the totalπ → ℓνℓ decay rate due to

virtual emission and reabsorption of photons are shown in Figure 1.7.

The direction of a charged particle changes when it scatters, and is therefore is accelerated.

As a consequence it radiates. Bremsstrahlung2 is the term used to describe radiation produced by

charged particles passing through a medium. Figure 1.6 shows that the electron cannot radiate a

2Bremsstrahlung is a German word meaning braking radiation
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e− γ

e−

Z
√

α

√
α

√
α

Figure 1.6: The Feynman diagram for the Bremsstrahlung process.

photon without exchanging a soft photon with a nearby nucleus. To be more specific, external

bremsstrahlung is used to describe radiation caused by decelerations when passing through a field

of atomic nuclei. Internal bremsstrahlung (IB) is used for the radiation of non-virtual quanta, i.e.,

photons or gluons, by particles participating in an interaction.

Including the IB, virtual corrections, and radiative corrections into (1.13), and assuming electron-

muon universality, we get

RSM,RC
e/µ =

Γ(π → eνe(γ))
Γ(π → µνµ (γ))

= RSM
e/µ (1+δ)(1+ ε) = 1.233×10−4 , (1.14)

where the larger of the corrections isδ =−(3α/π) ln(mµ/me) andε =−0.92(α/π). Another more

transparent representation of the branching ratio can be given by,

RSM,RC
πe2

=

(

ge

gµ

)2(me

mµ

)2
(

1−m2
e/m2

µ

)2

(

1−m2
µ/m2

π

)2 (1+δR) , (1.15)

where all radiative corrections have been combined intoδR, helicity-suppression is apparent in the

(me/mµ)
2 term, and electron-muon universality would hold whenge/gµ = 1.

Recent standard model calculations have been published by Marciano and Sirlin [48], Finke-
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Figure 1.7: The radiativeπ+ → ℓ+νℓ decay processes.
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Figure 1.8: The Inner Bremsstrahlung diagrams for
theπ+ → ℓ+νℓ decay.

meier [36], and Cirigliano and Rosel [22],

RSM,RC
πe2

=































(1.2352±0.0005)×10−4 Ref. [48]

(1.2354±0.0002)×10−4 Ref. [36] .

(1.2352±0.0001)×10−4 Ref. [22]

(1.16)



Our treasure lies in the beehive of
our knowledge. We are perpetually
on the way thither, being by nature
winged insects and honey gatherers
of the mind.

Friedrich Nietzsche

Chapter 2

Motivation for the PEN Experiment

In comparing (1.16) and (1.4) in the previous chapter we see that the current experimental results

for Rπe2 lag behind Standard Model calculations by an order of magnitude. This chapter will discuss

several reasons motivating the PEN experiment.

2.1 Lepton Universality

The Standard Model lepton coupling constant,gℓ (whereℓ = e,µ,τ), between the weak boson and

the leptons (e.g., inπ→ ℓν decay, Figure 1.2) is taken to be equivalent across all lepton flavors. This

hypothesis, calledlepton universality[27], is generally accepted, although there are no compelling

reasons for it.

Loinaz et al. [46] have parameterized possible flavor non-universalsuppressions ofgℓ in Wℓνℓ

coupling as,

gℓ → gℓ
(

1− εℓ
2

)

.

14
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(
) (d)

Figure 2.1: Experimental constraints on∆eτ and∆µτ (from Loinaz et al. [46]), derived from(a) W decay,
(b) τ decay,(c)π andK decay. The combination of the limits from the aforementioned decays is shown in(d).
Improved accuracy on the limits of gµ/ge fromπ decay will reduce the allowed region to a narrower strip in
(c) and (d).

The linear combinations of theεℓ constrained by W,τ, π, and K decays are:

gµ
ge

= 1+
εe− εµ

2
,

gτ
gµ

= 1+
εµ− ετ

2
, and

gτ
ge

= 1+
εe− ετ

2
.

Experimental constraints can be evaluated on∆eµ ≡ εe− εµ, ∆µτ ≡ εµ− ετ, and∆eτ ≡ εe− ετ. Two

of the three are independent, and Loinaz et al. have chosen to considerthe latter two. Their plots

demonstrating these experimental constraints are reproduced in Figure 2.1.
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Repeating the ratio of decay rates (1.15) for convenience,

RSM,RC
πe2/πµ2

=

(

ge

gµ

)2(me

mµ

)2
(

1−m2
e/m2

µ

)2

(

1−m2
µ/m2

π

)2

(

1+δRπe2/πµ2

)

, (2.1)

and the analogous ratio of the relevant theτ andπ decay rates,

RSM,RC
τe2/πµ2

=

(

gτ
gµ

)2 m3
τ

2m2
µmπ

(

1−m2
π/m2

τ

)2

(

1−m2
µ/m2

π

)2

(

1+δRτe2/πµ2

)

, (2.2)

shows how the measurements of these branching ratios directly constrain theratios of coupling

constants. Using the above equations and the available experimental data one can evaluate [46],

(

ge

gµ

)

π

= 1.0021±0.0016 and

(

gτ
gµ

)

πτ

= 1.0030±0.0034 .

2.2 Charged Higgs Boson

Another illustration of the reach of this preciseRπe2 measurement is the bound we can place on

the hypothetical charged physical Higgs boson. To give a value, let’s consider the Lagrangian for

four-fermion vector (V), axial-vector (A), scalar (S), and pseudoscalar (P), interactions that might

arise fromnew physics(NP) at a scaleΛ [16]:

LNP =

[

± π

2Λ2
V

uγµd± π

2Λ2
A

uγµγ5d

]

eγ µ(1− γ5)ν

+

[

± π

2Λ2
S

ud± π

2Λ2
P

uγ5d

]

e(1− γ5)ν . (2.3)
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Scalar and vector interactions are already constrained toΛS ≥ 10 TeV andΛV ≥ 20 TeV by CKM

unitarity tests and a measurement [52] of superallowed nuclearβ decay. The experiment described

in this dissertation, assuming∆Rπe2/Rπe2 ∼ 0.1 %, can probe scales ofΛP ≤ 1,000 TeV andΛA ≤

20 TeV. A measurement ofRπe2 does not directly probe scalar interactions, but indirect sensitivity1

to ΛS ≤ 60 TeV could be obtained through pseudoscalar interactions induced by loop effects from

new scalar interactions [26, 19].

Take, for example, the charged physical Higgs boson, with couplingsg
2
√

2
λud to theuγd pseu-

doscalar current andg
2
√

2
λℓν to ℓ(1− γ5)νℓ, whereg is the SU(2)L gauge coupling,ℓ can be e orµ,

andλ represents chirality-breaking suppression factors. The branching ratio for these new physics

scenarios can be written as

RNP
πe2

= Rπe2

[

1− 2m2
π

me(mu+md)

m2
W

m2
H±

λudλµν

(

λeν

λµν

− me

mµ

)]

. (2.4)

A ±0.1 % measurement ofRπe2 therefore probes [16]

mH± ≃ 200 TeV×
√

λud

√

λµν

(

λeν

λµν

− me

mµ

)1/2

. (2.5)

If e-µ universality extends into the enlarged scalar sector, i.e.,λeν
λµν

= me
mµ

, as in the minimal two-

Higgs doublet model,Rπe2 will not be sensitive tomH± . In more general multi-Higgs models,

however, such a relationship is not required. In particular,mH± ≃ 400 GeV is probed for loop-

induced charged-Higgs couplings whereλeν ≃ λµν ≃ λud≃ α/π when∆Rπe2/Rπe2 reaches±0.1 %.

1A sensitivity ofΛS ≤ 60 TeV is well beyond the capability of nuclearβ decay measurements.
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2.3 Massive Neutrinos

Shrock outlines a method to search for the existence of massive neutrinos using eitherπ → eν or

π→ µν decays [67]. Britton et al.[10] state that theπe2 branching ratio may increase due to a relax-

ation of helicity suppresion. An improved measurement of the branching ratiowill further confine

the neutrino mixing parameter,Uei . The implications ofRπe2 on massive neutrinos is discussed

further by Bryman et al.[13] and Britton et al.[9].

Also, Bryman and Numao [14] investigate limits on the existence of massive neutrinos using

the plentifulπ→ µν decays.

2.4 Extra-Dimension Models

A precise measurement ofRπe2 will constrain hypothetical extra-dimension models with strong

gravity at the TeV scale [19].

2.5 Ratio of Pseudoscalar to Vector Coupling

If the π→ eν decay were dominated by a pseudoscalar coupling, then the helicity suppression of

the decay would vanish, and the branching ratio would beRπe2 ≈ 5.5. A difference between the

Standard Model description of the decay and the best experimental results can provide an estimate

of the residual pseudoscalar coupling.

Subtracting the Standard Model component from the experimental results gives bounds onCP,

the ratio of pseudoscalar to vector coupling strengths. At the 2σ level we obtain,

−7×10−3 ≤ CP

fπme
≤ 2.5×10−3 , (2.6)
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where fπ is the pion decay constant andme is the electron mass. Using the model independent

technique outlined by Bryman et al.[17], limits on masses of hypothetical particles for the maximal

coupling can be obtained.

2.5.1 Hypothetical Leptoquark and Supersymmetric Particles

Leptoquarks are particles whose interaction vertices simultaneously involveboth leptons and quarks.

They appear in various extensions of the Standard Model, including technicolor models [34] and

Grand Unified Theories [64, 61, 39]. In supersymmetric (SUSY) models, for each Standard Model

fermion, there is a corresponding boson, and vice versa. These superpartners have the same quantum

numbers as the original particles, except for spin [19].

We calculated new lower limits on the masses of pseudoscalar and vector leptoquarks and hy-

pothetical charged Higgs particles. These calculations use the proposeduncertainty in the measure-

ment of theπ+ → e+νe branching ratio of the PEN experiment.

Neglecting radiative effects, the theoretical branching ratio according to the standard model (via

theV−A weak interaction) is,

R0
πe2

=
Γ(π+ → e+νµ)

Γ(π+ → µ+νµ)
=

(

me

mµ

)2(m2
π−m2

e

m2
π−m2

µ

)2

= 1.233×10−4 . (2.7)

A measurement which disagrees with this prediction may be explained with particlescontained in

theories beyond the Standard Model. BSM theories with more Higgs content would contain charged

Higgs bosons, there are pseudoscalar leptoquarks in theories with dynamical symmetry breaking,

and Pati-Salam types of grand unified theories contain vector leptoquarks. These particles lead to

processes containing pseudoscalar currents, thus creating order 1/m2
H± contributions tof e

PL. These



CHAPTER 2: MOTIVATION FOR THE PEN EXPERIMENT 20

contributions will lead to branching ratio corrections of the form [66]

Rth
πe2

= R0,th
πe2

(

1+ 2mπap

meaA
f e
PL

)

(

1+ 2mπap

mµaA
f µPL

) . (2.8)

But sinceme/mµ is of order 10−3 and we expectf µPL to be of the same order asf e
PL, we can neglect

the second term in the denominator.

Rth
πe2

= R0,th
πe2

(

1+
2mπap

meaA
f e
PL

)

. (2.9)

The experimental branching ratio can be written as,

Rexp
πe2

= R0,exp
πe2

±∆R0,exp
πe2

= R0,exp
πe2

(

1± ∆R0,exp
πe2

R0,exp
πe2

)

, (2.10)

where∆R0,exp
πe2 gives the uncertainty in the measurement. The proposed relative uncertainty of the

PEN experiment is

∆R0,exp
πe2

R0,exp
πe2

= 0.05% . (2.11)

An uncertainty of this size will further constrainf e
PL. Assuming the BSM theories are correct,

R0,th
πe2

(

1+
2mπap

meaA
f e
PL

)

= R0,exp
πe2

(

1+
∆R0,exp

πe2

R0,exp
πe2

)

, (2.12)

which means,

f e
PL <

meaA

2mπap

1

R0,th
πe2

(
√

(

R0,exp
πe2 −R0,th

πe2

)2
+∆R0,exp

πe2

)

= 3.0×10−7 . (2.13)
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Now we are able to use this constraint onf e
PL to find the lower bounds on the masses of the hypoth-

esized particles.

The charged Higgs’ mass can be found from:

S
mtmτ

m2
H±

∼ f e
PL < 3.0×10−7 , (2.14)

whereS is the mixing suppresion, taken to be 10−2. The constraint is then

mH± >

√

Smtmτ

f e
PL

= 3.2 TeV . (2.15)

The contraint on pseudoscalar leptoquark mass,mp is obtain by

f e
PL ∼

√
2

GF

(

1
250

)2 1
2m2

p
, (2.16)

which gives,

mp >

√

1√
2

(

1
250

)2 1
f e
PL

1
GF

= 1.8 TeV . (2.17)

The vector leptoquark’s mass,mG, is constrained by

f e
PL ∼

4m2
W

m2
G

, (2.18)

so we have

mG >

√

4m2
W

f e
PL

=
2mW
√

f e
PL

= 292 TeV. (2.19)

The numerical values for the quantities used in these calculations are givenin Table 2.1.

Assuming the PEN measurement gives the same central value for theπe2 branching ratio but
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Table 2.1: Numerical values used in mass limit calculations.

Quantity Value
mπ 139.57 MeV/c2

mu+d 10 MeV/c2

me 0.511 MeV/c2

mt 173.8 GeV/c2

mW 80 GeV/c2

R0,exp 1.2352×10−4

GF 1.1664×10−5 GeV−2

with a relative uncertainty of 0.05%, the lower bounds of the aforementionedhypothetical particle

masses in BSM theories will be raised. In summary, the calculated mass boundson the charged

Higgs, pseudoscalar leptoquark, and vector leptoquak are:mH± > 3.2 TeV, mp > 1.8 TeV, and

mG > 292 TeV, respectively.

2.6 Ratio of Scalar to Vector Coupling

Campbell and Maybury [20] discuss indirect constraints on the ratio of scalar to vector coupling,

CS,

−1.2×10−3 ≤CS ≤ 2.7×10−4 . (2.20)

When combining experimental measurements ofRπe2 with limits on scalar interactions from muon

capture experiments, one can provide an order of magnitude stronger limit on CS than that which is

possible from direct experimental searches [23].
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2.7 Higgsino, Chargino, and Slepton Bounds and R-Parity in Super-

symmetry

This section summarizes the calculations by M. Ramsey-Musolf et al. [63]. They studied the effects

of supersymmetry (SUSY) onRπe2 in the minimally symmetric standard model (MSSM) both with

and without R-parity conservation. In the R-parity conserving case, effects from SUSY loops can

be of the same order of magnitude as the planned uncertainty of the PEN experiment. A deviation

in Rπe2 of

0.0005≤
∣

∣

∣

∣

∣

∆RSUSY
πe2

Rπe2

∣

∣

∣

∣

∣

≤ 0.001 , (2.21)

due to the MSSM would imply

• a mass bound on the lightest chargino,mχ1 ≤ 250 GeV,

• the left-handed selectron,ẽL , and smuon,̃µL , would be highly degenerate, with eithermẽL/mµ̃L ≥

2 ormẽL/mµ̃L ≤ 1/2,

• that at least one of̃eL or µ̃L must be light, such thatmẽL ≤ 300 GeV orµ̃L ≤ 300 GeV, and

• the Higgsino mass parameterµand left-handed up squark massũL satisfy either|µ| ≤ 250 GeV

or |µ| ≥ 250 GeV and̃uL ≤ 200 GeV.

2.8 Summary

In conclusion, the large difference between the precision in SM calculations and previous experi-

mental measurements ofRπe2 strongly motivated this new precision measurement.Rπe2 provides the

best test of electron-muon universality. The data obtained in the experiment can provide mass limits
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on massive neutrinos. It can constrain extra-dimension BSM theories. Furthermore, it provides

limits on hypothetical leptoquarks and supersymmetric particles.

It is also worth noting thatRπe2 can constrain other SM extensions, such as (super)compositeness

theories [19]. We will also obtain further evidence for, or against, the NuTEV anomaly [72, 73, 46].

Reaching the proposed accuracy [23] inRπe2 will also reduce the external systematic error in the

pion beta decay branching ratio [62] to an insignificant level.



Argument is conclusive, but it does
not remove doubt, so that the mind
may rest in the sure knowledge of
the truth, unless it finds it by the
method of experiment.

Roger Bacon

Chapter 3

The PEN Experiment

The PEN experiment, named for the process under investigation (pion → electron+neutrino), took

place at the Paul Scherrer Institute located in Villigen, Switzerland. The goal was to measure the

π → eν(γ) branching ratio with a relative uncertainty of 5×10−4 or less. This chapter describes

the experimental set-up and the data collection. Initial diagnostic and development runs took place

in 2007, and three data production phases occurred in the years 2008,2009, and 2010.

3.1 Beamline

The layout of the PSI accelerator facility is shown in Figure 3.3. Protons are obtained from an

ion source and DC accelerated1 to 810 keV with the Cockcroft-Walton cascade accelerator, Figure

3.1(a). A 60 keV extraction voltage results in protons with an energy of 870keV.

Injector-2 (Figure 3.1(b)) is a ring cyclotron with 4 sector-magnets and anextremely low injec-

tion energy of 870 keV. Its specific design provides high quality, high intensity beams of 72 MeV

1The maximum extracted energy possible from a DC high voltage accelerator based on air insulation is roughly
800 keV.

25
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protons (37.1% of light speed). The Injector-2 cyclotron was built to replace the multi-particle,

variable energy, Injector-1 constructed by Philips, Eindhoven. Since the commissioning in 1984, it

has provided beams of 72 MeV protons to be injected into the 590 MeV ring cyclotron.

(a) Cockcroft Walton Cascade to provide 800 keV.

(b) 72 MeV Injector Cyclotron.

(c) 590 MeV Ring Cyclotron.

Figure 3.1: The three main stages of the PSI proton
accelerator [2].

The ring cyclotron is a seperated sector cy-

clotron with a fixed beam energy of 590 MeV

(78.9% of light speed), built by PSI and com-

missioned in 1974. The 72 MeV beam from the

Injector-2 cyclotron, enters from the back of the

cyclotron and is injected into an orbit in the center

of the ring. The protons are accelerated over 186

revolutions and extracted with their full energy

in the foreground of Figure 3.1(c) [2]. The pro-

ton beam current is 2.2 mA DC. The accelerator

frequency is 50.63 MHz, which corresponds to

a time-between-pulses of 19.75 ns, with a bunch

width of∼0.3 ns.

Secondary beamlines at PSI provide pions

and muons to experimental areas2. The primary

beam of protons is steered towards a 4 cm long

rotating cone of polycrystalline graphite3 (Fig-

ure 3.2) where the collisions between protons and

carbon nuclei occur with a center of mass energy

2The PEN experiment was situated in theπE1 area and used theπE1 beamline.
3Target Station E, for the French word “Epais” meaning thick.
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greater than the pion mass, 140 MeV/c. Pions are created and extracted from the target in the for-

ward direction at an angle of 10◦. There are three slit systems in the beam line to control either the

beam intensity by reducing the angular acceptance of the beam, or the momentum band acceptance

and hence the momentum resolution of the transported beam.

Figure 3.2: The graphite pion production target [2].



CHAPTER 3: THE PEN EXPERIMENT 28

Figure 3.3: Layout of the accelerator facility at PSI.
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3.2 The PEN Detector System

The PEN detector system is basically an upgraded version of the PIBETA detector [31] that was

used from 1999 to 2004 to measure the beta decay of the pion,π
+ → π

0eν [62], and the radiative

decay,π+ → e+νeγ [18]. This chapter will give a brief overview of the entire PEN detector, with

emphasis given to new detector components that were added or upgradedfor this experiment.

(a)Photograph taken during the assembly of the PEN de-
tector system in 2007.

(b) PEN detector system in 2010 with the lead shielding
house rolled away allowing us to view the thermal house
surrounding the main detector region.

(c) Photograph from 2007 with the lead shielding house in
place.

Figure 3.4: Photographs of theπE1 area taken from the gallery hall (southeast) with the PEN detector
system in various stages of assembly.
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3.2.1 Beam Tracking

Magnets steer the pions from the production target to theπE1 area. Bending dipole magnets and

collimating slits are used to select pions with a specific momentum, typically between 70and

85 MeV/c. The first detector the pions reach in theπE1 area is an active plastic scintillator4 that we

call the forward beam counter (BC). The thickness of the BC was increased to 3 mm from the 2 mm

counter used in the PIBETA experiment5. It is located at the center of a beam collimator, first sur-

rounded by a small tungsten collimator, which in turn is surrounded by a larger lead collimator. The

bending dipole magnets are tuned to allow pions to pass through the 7 mm collimating hole, while

positrons are stopped in the lead since they are∼40 mm from the pions in the horizontal plane. The

beam counter is wrapped in 3M VM2000 Radiant Mirror Film, a completely non-metallic multi-

layer polymer film, 63.5µm thick, to ensure all the light reaches the pair of 1-inch photomultiplier

tubes attached to the top and bottom of the scintilltor. The PMTs are housed in thelarge lead col-

limator itself. Figure 3.5 shows the vacuum beam pipe with the signal and high-voltage cables for

the BC PMTs entering the top and the bottom of the vacuum pipe.

After passing through the forward beam counter, the beam particles pass through a series of

three focusing quadrupole magnets. The focused beam now enters the main PEN detector region

where it leaves the vacuum pipe through a thin window and enters the degrader counter.

In 2008 a four-piece wedged active6 degrader (wAD), placed 3 cm upstream of the target, was

used to provide information regarding thex,y coordinates of the incoming beam particle. The idea is

to have two pairs of scintillator wedges tapering from 5.0 mm to 1.5 mm with the thickness of each

pair of wedges summing to a constant thickness. The ratio of scintillation light produced in each

4Bicron/Saint-Gobain: BC 408 [21]
5A 1 mm counter was used in the PEN development run in 2007, but resultedin an insufficient energy resolution
6BC 408 plastic scintillating material wrapped in 76µm thick 3M Radiant Mirror VM 2000 reflective foil [3].
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wedge of a pair is used to determine how far from the detector axis the beam particle is. A ratio of

1.0 corresponds to the detector axis, assuming the wedges of the degrader are perfectly aligned.

AT
PMTvac.

MWPC1

MWPC2

PH

wAD

BC

CsI
pure

π+
beam

10 cm

wAD

(x4)

(a) (b)

Figure 3.6: Cross sections of 2008 PEN Detector System.(a) shows a slice through the y-z plane showing
the wedged active degrader (wAD), active target (AT), wire chambers (MWPC1-2), plastic hodoscope (PH),
and CsI calorimeter (CsI).(b) is a slice through the x-y plane showing the 20 hodoscope staves.

Each degrader wedge was glued to a bent acrylic light guide and optically coupled to indi-

vidual Hamamatsu R7400U photomultiplier tube (PMT) [29]. Comparing the areas of the single-

photoelectron line with the through-goingπ+ signal on a digital oscilloscope we deduced an average

light response of 160 photoelectrons/MeV for each degrader wedge.The light response of all four

wedges is digitized7 at 2 GS/s and recorded for every event, resulting in a 0.9 ns rise time and a

2.1 ns decay time.

7Acqiris High Speed 10-bit PXI/CompactPCI Digitizer, Model DC282 [57].
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ATwAD

PMT

MWPC1

Figure 3.7: Cross section through the central de-
tector region indicating the locations of the inner
MWPC, the wedged active degrader (wAD) and its
mounting to the end of the vacuum beam pipe, as
well as the air light guide between the active target
(AT) and photomultiplier tube (PMT).

LEFT

RIGHT

1.50 mm

5.00 mm

1.50 mm

5.00 mm

ø 12.00 mm

Figure 3.8: Wedged active degrader cross section
for the left and right wedges. The top and bottom
wedges have the same dimensions with the excep-
tion of a 15 mm overlap diameter (as opposed to
the 12 mm overlap diameter for the left and right
wedges).

Figure 3.5: The forward beam counter, BC, is
located inside the vacuum pipe.

This configuration requires a thicker degrader

overall to ensure enough thickness at the tips of the

wedges to give enough scintillation light. The draw-

back of this 13 mm thickness as opposed to the 5 mm

single piece degrader used in the 2007 development

runs is that a higher beam momentum is required

to get the pion to stop in the target, resulting in

more nuclear reactions in target. More material also

causes an increase in multiple scattering of the pion, thus decreasingx,y position resolution.

After the beam particle passes through the degrader it enters the active target (AT). The beam

momentum was chosen such that the pions will deposit enough energy in the degrader that they will

come to a stop at the center of the target. The target is a cylinder made of scintillating plastic8 with

a 15 mm length and a 15 mm radius. When the pion decays at rest into a muon anda neutrino,

8Bicron/Saint-Gobain: BC 418 [21]
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Figure 3.9: Drawing of the wedged active degrader.

the monoenergetic muon travels 1.38 mm, entirely inside the target. The stopped muon will subse-

quently decay into a positron that exits the target. The light collected by the PMT9 attached to the

target via a light guide is digitized and recorded for every event.

9Hamamatsu H2431-50
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(a) (b)

(c) (d)

Figure 3.10: Photographs of the wedged active degrader. (a) and (b) show the four wedges together with the
mounting allowing small photomultiplier tubes to attach tothe ends. (c) and (d) show an individual wedge.
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3.2.2 Decay Tracking

Surrounding the target are two concentric cyclindrical multi-wire proportional chambers (MWPC1-

2). The inner chamber has a diameter of 12.5 cm and the outer chamber has adiameter of 25.0 cm.

These wire chambers give precise tracking information for charged particles only, as neutral parti-

cles (mainly photons) are not detected.

(a)Drawing of the PEN detector system. (b) Photograph of the PEN detector system.

Figure 3.11: Drawing (a) and photograph (b) of PEN detector system duringthe refurbishment in 2007. This
figure shows mainly the 240 crystal CsI calorimeter, the photomultiplier tube bases, the support structure,
and ducts for temperature control.

The outer wire chamber is surrounded by twenty staves of plastic scintillator10 which together

form the plastic hodoscope (PH) system. The thickness of the staves was increased from 3.25 mm

to 4.0 mm for the PEN experiment. The original staves suffered significant radiation damage and

aging. Light guides and photomultiplier tubes are attached to each end of the 20 scintillating staves.

As a charged particle passes through the hodoscope, time-to-digital converters (TDCs) record the

time of the light pulse, and amplitude-to-digital converters (ADCs) record theenergy. Since the

hodoscope is cylindrical and the secondary tracks are radial, it helps touse energy loss per distance

10Bicron/Saint-Gobain: BC 408 [21]
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travelled, dEPH/dxPH, instead of justEPH. The staves are 0.4 cm thick so the distance travelled

becomes dx = 0.4cm/sinθ, and(dE/dx)PH = EPHsinθ/0.4cm. The minimum ionizing positrons

give a narrow peak, while the protons exibit quenching [45].

Figure 3.12: Three dimensional view of the 240-
segment pure-CsI crystal calorimeter. Ten “veto”
crystals surround the upstream and downstream
beam openings.

Next in the sequence of decay tracking de-

tectors is the 240-module pure-CsI crystal sphere

shown in Figures 3.12 and 3.13. The crys-

tal calorimeter collects energy deposited by both

charged particles and photons covering a total

solid angle of 0.77× 4π sr. The inner radius of

the calorimeter is 26 cm and the axial length of

the modules is 22 cm. The positron usually anni-

hilates within about 1 radiation length, producing

Bremstrahlung and a photon shower. The crystals

are approximately 12 radiation lengths thick and

contain most of the shower. Unfortunately, some shower photons may escape and we are unable to

record the full energy.



CHAPTER 3: THE PEN EXPERIMENT 37

 (degrees)φ
0 50 100 150 200 250 300 350

 (
de

gr
ee

s)
θ

20

40

60

80

100

120

140

160

0 1 2 3 4

5 67 8 9

10 11 12 13 14

15 1617 18 19

20 21 22 23 24

25 2627 28 29

30 31 32 33 34

35 3637 38 39

40 41 42 43 44

45 4647 48 49

50 51 52 53 54

55 5657 58 59

60 61 62 63 64

65 6667 68 69

70 71 72 73 74

75 76 7778 79

80 81 82 83 84

85 8687 88 89

90 91 92 9394

95 9697 98 99

100 101 102 103104

105 106107 108 109

110 111 112 113 114

115 116117 118 119

120 121 122 123 124

125 126 127128 129

130 131 132 133 134

135 136137 138 139

140 141 142 143 144

145 146147 148 149

150 151 152 153154

155 156157 158 159

160 161 162 163 164

165 166 167168 169

170 171 172 173 174

175 176 177178 179

180 181 182 183 184

185 186 187188 189

190 191 192 193194

195 196197 198 199

200 201 202 203 204

205 206207 208 209

210 211 212 213214

215 216217 218 219

220 221 222 223 224

225 226227 228 229

230 231 232 233234

235 236237 238 239

Top Bottom

Beam

Figure 3.13: Mercator projection of the 240 pure-CsI crystals in the calorimeter as seen from the target.

3.2.3 Triggers

Analog PMT signals from detector elements are split into two branches, one totrigger the data

acquistion (DAQ) system, and one to digitizing electronics. This section describes the trigger logic

used to decide when to write data to disk.

A time coincidence between the forward beam counter and the two downstream degrader wedges

(right and left), adjusted for the time difference corresponding to theπ
+ time-of-flight between the

two detectors, indicates that we have a pion stopping in the target. The BC, DR·DL, and their

coincidence signal are shown in Figure 3.14. The beam pions travel muchslower than the remain-

ing beam muons and beam positrons and are easily separated by considering time-of-flight (Figure

3.15). We refer to this coincidence signal as

πSTOP= BC · (DR·DL)High Threshold, (3.1)
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Table 3.1: Theπ+ stopping rate in 2008.

πSTOP Rate (kHz) Run Range
15 83580-84176
21 84177-84237
29 84238-84555
41 84556-84617
28 84618-84812

where “High Threshold” indicates that we required a minimum amount of energy to be deposited

in the last two wedges to consider that beam particle to be a pion. Half way through the 2008 data

collection11 we required further coincidence with the target,

πSTOP= BC · (DR·DL)High Threshold·TGTLow Threshold . (3.2)

Figure 3.14: Coincidence between forward Beam
Counter and Degrader. Top trace = BC, Middle
trace = (DR · DL), Bottom trace = Coincidence.
Oscilloscope is triggered on the coincidence. Verti-
cal scale: 400 mV/div. Horizontal scale = 20 ns/div.

Figure 3.15: The BC signal contains three dis-
tinct pulses. By aligning the coincidence with the
degrader signal one can select the particle (pion,
muon, positron – left to right). Top trace = BC, Bot-
tom trace = (DR· DL). Oscilloscope is triggered on
(DR · DL). Vertical scale: 300 mV/div. Horizontal
scale = 10 ns/div.

TheπSTOP signal normally triggers the formation of a long logic signal calledπGATE. The

width of the gate signal determines the amount of time the electronics will record data for that event.

Figure 3.16 shows the BC, (DR·DL), andπGATE signals for a single event.

11πSTOP was changed starting run 84176.
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We can’t just start recording the data arriving after the gate opens, otherwise we would miss the

beginning of the event. Therefore the data branch is delayed with respect to the trigger branch. For

the first half of 2008 data collection the data branch was delayed such thattheπSTOP occured 25 ns

after the gate opened. For the later half of 2008 the delay was reduced to 10 ns. The gate was open

for approximately 250 ns.

Figure 3.16: TheπGATE signal for a single event.
Top trace = BC, Middle trace = (DR· DL), Bottom
trace = πGATE. Vertical scale: 400 mV/div (top),
700 mV/div (middle), 500 mV/div (bottom). Hori-
zontal scale = 50 ns/div.

Figure 3.17: Target pulse for a single event be-
fore and after shaping. Top trace = Original TGT
signal, Bottom trace = Shaped TGT signal. The
shaped TGT signal was first implemented in 2009
and is is sharper, with less tail. Vertical scale
= 30 mV/div(top), 80 mV/div(bottom). Horizontal
scale = 20 ns/div.

Since theπ→ e events occur roughly a thousand times less frequently thanπ→ µ→ e events

we must be smart about the events we chose to record. Every time the systemaccepts an event,

there is an associated “dead time” while the system collects the information corresponding roughly

to the 250 ns that the gate is open. If we were to record everyπSTOP we see, we would collect

too few π → e events and the experiment would take too long. The solution is to include the

energy deposited on the decay side of the event into the trigger. We can then record all events with

an energy above a certain threshold (predominatelyπ → e events) and prescale events below the

threshold (predominatelyπ→ µ→ e events).

In 2008 the PEN experiment still used the field programmable gate arrays (FPGAs) as in the
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PIBETA experiment and looked at the energy of the individual clusters of CsI crystals [31]. These

FPGAs took the OR of the energies in the 60 clusters of CsI crystals to determine if any of them

had energy above threshold. When that occurs in coincidence with aπGATE, a high-energy trigger

fires,

TRHigh = EAbove Threshold
CsI ·πGATE . (3.3)

For other events that don’t have high enough energy deposited in the CsI calorimeter, hits in the

hodoscope are considered. The FPGA was already programmed with a 1/16 prescale factor for

the πGATE signal. Using this software to take the coincidence between a hit in the hodoscope

and prescaledπGATE gives a low-energy trigger for only 1 out of every 16 of such events. The

1/16 software prescaling wasn’t enough of a data reduction so we implemented an additional 1/4

hardware prescaling to the hodoscope signal resulting in a total prescalefactor of 1/64 for the low-

energy trigger,

TRPS 1:64
Low = PHPS 1:4

Hit ·πGATEPS 1:16 . (3.4)

The CsI energy threshold varied slightly throughout 2008. There are run ranges with the threshold

set to 50.9, 51.2, and 50.5 MeV. Additionally, only the 220 full-sized crystalsare in the trigger logic,

so the rings of veto crystals don’t contribute to the trigger.

In September of 2009 the summing of the CsI crystal energies changed from the cluster logic of

PIBETA to a new implementation involving different groups of neighbors. The 2009 high-energy

trigger also required a hodoscope coincidence. The target signal inπSTOP was also shaped to

provide a faster rise-time and to allow us to use hardware to search for a possible muon in the target,

see Appendix A.
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Figure 3.18: Target signal triggered with “no
muon” signal, selectingπ→ eevents. Oscilloscope
persistance for 5 seconds. The distribution is almost
completely gone at 100 ns. The pronounced pulse is
the positron signal and the peaks to the left of the
positron are the pions. Vertical scale = 30 mV/div.
Horizontal scale = 50 ns/div.

Figure 3.19: Target signal triggered on (PHHit

AND πSTOP). Oscilloscope persistance for 5 sec-
onds. The length of the distribution extends for
the full πGATE width. The pronounced pulse is
the positron signal and the peaks to the left of the
positron are the pions. Vertical scale = 30 mV/div.
Horizontal scale = 50 ns/div.

3.2.4 Revamped Slow-Control System

Figure 3.20: A portion of one of the NIM elec-
tronics racks located in the climate-controlled
Electronics Hut.

The Slow-Control System was completely re-

designed just prior to the 2008 data collection run.

This system was responsible for controlling and

monitoring high voltages, temperature, water and air

flow for humidity regulation, and gas flow for wire

chambers.

The heart of the slow-control system is the SCS-

200, a PSI designed monitoring and control inter-

face. It contains both voltage and current sensors

as well as an Ethernet connection that allows us to

change set point values remotely.

The slow-control system regulated the high volt-

age applied to the PMTs attached to all beam coun-
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Figure 3.21: Schematic diagram for the slow-control system.

ters and CsI crystals. The temperature was regulated in the main detector region inside the thermal

house as well as between the thermal house and the lead shielding house. Temperature sensors were

mounted to the inner and outer surfaces of four CsI crystals, 22, 88, 118, and 174. The locations of

these crystals are shown in figure 3.13. The temperature was also regulated in the electronics hut,

and the temperature of the high voltage supplies was monitored. The main detector region (inside

the thermal house) also had humidity regulation. The SCS-200 also controlledthe gas flow for the

two cylindrical MWPCs and later for the miniature time projection chamber as well.
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3.3 Modifications to the Detector Subsystems in 2009-2010

I have described the experimental set up as it was in 2008. As the data collection proceded, collabo-

rators devised new methods to make the data cleaner. In particular, the wedged active degrader was

replaced with a miniature time projection chamber (mTPC), resulting in a significantincrease in

beam particle lateral tracking resolution. Not only was the tracking more precise, but the wAD was

replaced with a much thinner single-piece degrader, reducing the effectsof pion multiple scattering.

The trigger logic was completely redesigned. In September of 2009, we removed the CsI en-

ergy clustering logic as it was implemented in the days of PIBETA and replacedit with grouping

CsI crystals with their neighbors. The energy threshold was then triggered on the sum of all 220

full-sized crystals directly, rather than pre-defined clusters. After reprogramming the FPGA unit

(LB102) to enhance the trigger coincidences we received spurious and intermittent double pulsing

of our trigger bit. We decided to replace the trigger logic with hardware rather than the software

based FPGAs. Appendix A shows all of the updated trigger diagrams as a reference.

We decided to form a dedicated trigger to collect moreπ → e events in the low-energy tail

region. Doing so, we implemented a “tail trigger” by accepting events with low-energy triggers and

missing the 4.12 MeV muon pulse in the target waveform. We performed shapingof the target pulse

in hardware (Figure A.10) which gave a faster rise time and faster fall time, allowing us to better

separate a muon pulse possibly existing after the pion pulse. This logical condition was referred to

as the “muon veto” in the schematic diagram shown in Figure A.11. Another improvement was the

implementation of a strobe signal in order to force all triggers to have the same (Plastic Hodoscope)

trigger timing, thus reducing the possibility of an associated systematic uncertainty from trigger-

time walk (Figures A.7-A.9).



Change is inevitable. Change is
constant.

Benjamin Disraeli

Chapter 4

Calibration and Temporal Stabilization

Many measured quantities in the PEN experiment change over time. The measurements are affected

by external influences as well as intrinsic detector properties. We must use our knowledge of physics

to stabilize the variation in these measurements, and in doing so we introduce calibration parameters.

There are three types of parameters used in this analysis: Type A parameters have to be determined

from a replay analysis of the data but should be constant in time (e.g., the relative rotation between

the two MWPCs), Type B parameters should be constant for large sets of runs so we only store a

few values and the run numbers at which they change (e.g., the target position), Type C parameters

may possibly change for every run (e.g., the detector gains), so we storethem in calibration offline

database (.codb) files and load the values during subsequent analyses. In several cases, calibration

parameters depend on the values of other parameters. Therefore, onemust determine the parameters

in several stages. Four calibration passes were deemed necessary to sufficiently stabilize the PEN

data.

For the 2008 data set we will be concerned only with measurement data collected after the

insertion of the wedged degrader, corresponding to runs 83580–84812.

44
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4.1 Initialization

The first step in any analysis is to define the reference coordinate system:zcorresponds to the beam

direction,x is beam left (left when facing downstream), andy is up. We have chosen to use the

multi-wire proportional chamber coordinates to define the origin of our system. Since we have two

such chambers, each with its own intrinsic coordinate system, it is possible forthe two structures to

be physically mounted in a misaligned fashion. Therefore we have devised two parameters to check

the relative rotation, using the distance of closest approach (DCA), andlongitudinal displacement

(zmirror
0 ) of the MWPC. If the wire chambers are aligned, the distributions of each observable should

be symmetric about the origin and independent of the beam’s stop position. Wedefine,

DCA ≡ 2n1−n2 and, (4.1)

zmirror
0 =















z2−2z1 for z2 > z1

2z1−z2 otherwise,

(4.2)

wheren1 andn2 are the hit wire number of the inner and outer chamber, respectively, andz1 andz2

are the axial position (z) determined from the inner and outer chamber, respectively. The factorof 2

arises in (4.1) because there are twice as many wires in the outer chamber asthere are in the inner

chamber. The factor of 2 in (4.2) is due to the fact that the outer chamber radius is twice as large as

the inner chamber radius. If the beam stop position is not atz0 = 0 then two peaks will emerge and

should be symmetric aboutz0 = 0. The same is true with DCA for stop distributions not uniformly

distributed in azimuthal angle,φ. The mean values of these distributions were found to be consistent

with zero, hence the two wire chambers are not misaligned, and no corrections are necessary.

The readout of some of the anodes on the wire chambers were not responding, and some died
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during the data taking. The “dead” anodes were determined and taken into account.

The plastic hodoscope detector is used for very precise timing of the positron. Therefore it

is essential to align each of the forty TDC values, from PMTs attached to the PH ends, to each

other. Any mismatch in timing may be due to different cable lengths, internal signal transit times

of the photo-multiplier tubes, or varied calibrations of different TDC channels in the electronics.

These 40 time-offset corrections were found and range from−1.547 ns to 1.946 ns. Next we

determined a coarse conversion between ADC channel and MeV for the plastic hodoscope energies.

We found this value to be 0.0045 MeV/channel. The fine adjustment may vary over time depending

on conditions such as applied voltage to the PMTs and is determined in the first calibration pass.

Similarly, a coarse conversion factor of 0.0381 MeV/channel was determined for the energy

measurments of the CsI calorimeter ADCs. The fine, run-dependent stabilization and calibration

of the CsI energies is done in its own calibration pass discussed in Section 4.3. Up to the time of

writing this dissertation, it was deemed unnecessary to calibrate the CsI TDC times, as they were

calibrated precisely enough during online data collection.

4.2 Calibration Pass 1

The mean range,Rπ, that the pion travelled in the target is deduced using the forward-backward

asymmetry in the positron energy loss in the target, and is given by the formula,

Rπ = 15

(

E
up
e+

E
up
e+ +E

down
e+

)

mm, (4.3)

where the length of the target is 15 mm andE
up
e+ andE

down
e+ , Figure 4.1, are the mean energy deposited

by positrons projected onto thez axis exiting the upstream and downstream faces of the target,
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Figure 4.1: Positron energy projected onto the z axis for trajectories going upstream (left) and downstream
(right).

respectively. The variation ofRπ from run to run is shown in Figure 4.3.

The absolute stop distribution is read immediately from thez⊥0 distribution shown in Figure

4.2, wherez0 is thez coordinate of the origin of the positron track deduced from the wire chamber

information. Thez⊥0 distribution only contains tracks with a direction perpendicular to the beam

axis, i.e., 85◦ < θ < 95◦. The target center in thez direction is thenzTGT = z⊥0 −Rπ+LTGT/2 mm,

whereLTGT = 15 mm is the length of the target along thez direction.

The center of the degrader in thez direction is also deduced using thez⊥0 distribution. The bin

contents of this distribution are set to zero if the content is below a certain threshold. Then the last

bin with entries before a continuous span of 20 empty bins is determined to be thedownstream face

of the last degrader wedge. Subtracting half the degrader thickness then gives the center of the set

of degrader wedges,zDEG. Figure 4.5 shows a discrete shift at run 84184.

The forty energies recorded by the ADCs on each side of the twenty plastichodoscope staves

were roughly converted to MeV before the first calibration pass. Next, any systematic effects in
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Figure 4.2: z0 distribution for perpendicular tracks with low entry bins set to zero.

these gains, such as PMT high voltage drift, are corrected via an array of forty calibration parame-

ters. As an example, Figure 4.6 shows the variations in the first two of these forty parameters.
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Figure 4.3: Meanπ+ penetration depth in the target versus run number in 2008. The observed variations
are due to different beam momenta.
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Figure 4.4: z of the target center versus run number in 2008.
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Figure 4.5: z of the degrader center versus run number in 2008. The discrete jump occured when the
degrader was moved during detector maintenance.
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plotted versus run number for 2008.
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Calibration Pass 2

Once the mean penetration range of the pion in the target,Rπ, has been determined for each run,

we are able to calculate the momentum the pion had upon entering the target. We use the range-

momentum relation empirically deduced from simulation [5, 6],

Rπ =
( pπ

64.56

)3.5
cm . (4.4)

Working backwards in steps, adding the mean thickness of each degrader wedge, we are able to find

the mean energy the pion would have deposited in each wedge. Assuming the beam profile is wide

enough and is roughly centered on the degrader, we can shift the mean energy in each degrader

wedge, Figure 4.7, to be equal to the expected energy. Figure 4.8 showsthe varation in these four

gain parameters from run to run.
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Figure 4.7: Fits to the uncalibrated wedged degrader
energies, with Bottom (red), Top (blue), Right (green),
Left (black).

The next parameter is used to make sure

we obtain the correct time difference between

the upstream beam counter and the degrader.

Since we know the distance between the beam

counter and the degrader we can calculate the

time it would take a photon to travel between

the two counters. At our operating momentum,

positrons travel very close to the speed of light.

Selecting positrons in the beam and adjusting

te
BC allows us to determine the time-offset cor-

rection for the upstream beam counter for each run, Figure 4.9.
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Figure 4.8: The run dependent energy gain factors for the four degrader wedges.
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Figure 4.9: Shift in the Beam Counter timing deduced from the Beam Counter to Degrader time-of-flight,
plotted versus run number for 2008.
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Figure 4.10: Run-dependant target energy gain correction factor in 2008.

The final parameter determined in pass 2 is the gain of the target energy forlower level analysis

and histogram filling in the analyzer program. This target energy gain is determined such that the

integral of the digitized waveform around the monoenergetic muon pulse equals 4.12 MeV. The gain

variation is shown in Figure 4.10. A similar parameter is calculated again in pass 4.

After the gains of each of the degrader wedges are calibrated in pass 2,we are able to determine

a Type A parameter (constant for all runs) that will correct for the light collection efficiency in the

wedges. The light collected depends upon the part of the wedge throughwhich the pion traverses

and the shape of the wedge itself.

The predicted energy that the pion will deposit in the target is obtained by calculatingETGT
π =

Eπ −EDEG
π , whereEπ is determined from the time-of-flight between the beam counter and the
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Figure 4.11: Ratio of actual pion pulse amplitudes to predicted pion pulse amplitudes, demonstrating the
extreme variation in light collection efficiency throughout the wedges of the degrader (left), and the accuracy
of the predicted pulse amplitude after the correction has been applied (right). The dashed circle shows the
geometrical overlap boundary among all four degrader wedges.

degrader. This energy is then converted into the amplitude that we expect tosee in the target wave-

form. Taking the ratio of actual pion pulse amplitudes to predicted amplitudes forall values ofx

andy demonstrates the variation in light collection efficiency throughout the wedges as can be seen

in Figure 4.11 (left). Including thisx,y dependent correction to the degrader energy allows the pion

target energy prediction to be more accurate and uniform inx,y, as shown in Figure 4.11 (right).

Calibration Pass 3

We’ve already determined the axial,z, coordinates of the degrader and target centers. Now we’ll find

the lateral offsets,x andy. To determine the center of the degrader with respect to the wire chambers,

we consider only events in which the beam pion underwent a hardonic reaction in the degrader

resulting in a proton track reconstructed with the MWPCs. Restricting ourselves to approximately
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vertical proton tracks,

70< φp < 110

250< φp < 290

and tracks within 2 ns of the expected pion stop time, we plot thex value of the distance of closest

approach to the detector axis (using wire chamber location as the reference), Figure 4.12. The mean

value of this distribution gives the offset of the degrader center in thex direction for each run, Figure

4.14. They0 offset is found analogously from proton tracks in the horizonal directions.
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Figure 4.12: Distributions of the x0 of protons travelling vertically (left) and y0 of protons travelling hori-
zonally (right), used to determine the center of the degrader in the MWPC reference frame.

Now that the center of the degrader is determined with respect to the MWPCs,it is trivial to

find the offset of the target relative to the degrader. Again, we consider proton tracks from hadronic

reactions in the degrader. This time we restrict our study to those tracks thatjust graze the front

face of the cylindrical target, but still form tracks from two wire chamber hits. These restrictions

result in the ring of events in the lateralx,y plane shown in Figure 4.13. We wrote our own circular

objective function for aχ2 minimization. For each run, we fit a circle with radius fixed at the target
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Figure 4.13: To determine the target’s position in
the x,y plane, a circle with the target’s radius is fit
to the points where the proton tracks cross the target
face.

radius to the ring of events. The center of the circle represents the targetoffset with respect to the

degrader. The lateral offsets as a function of run are shown in Figure4.15.
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Figure 4.14: Center of the degrader in the x and y directions versus run number in 2008.
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Figure 4.15: Center of the target in the x and y directions versus run number in 2008.



CHAPTER 4: CALIBRATION AND TEMPORAL STABILIZATION 58

Calibration Pass 4

Calibration pass 4 is used to calibrate the initial values in the fit Section 5.2) to the digitized target

waveform. Several fit parameters (such astπ andte) are fixed to the predicted values, so having an

accurate prediction is critical.

Since this pass is the first to execute fits to the waveform, we must first determine the target

waveform response shape due to a charged particle. The waveform shape itself is formed mostly

from collected photoelectrons and contains artifacts due to improperly terminated connections, im-

perfect contacts, etc., which may appear or disappear at various pointsduring the data collection.

The task is to determine the shape of the pulse from a single event including asmuch of the

decaying tail as possible. Pions and muons decay too quickly, and the daughter particles from the

decay create peaks in the tail. Positrons trigger for the waveform recording, and occur too late in

the recorded waveform to use them. We have chosen to use protons in the target, mostly created by

pion-nucleon reactions in the degrader or target itself. We can cleanly select protons that occur early

in the waveform, without additional pulses riding on their tails. We averaged shapes from prompt

events with recorded proton target energies between 5 and 15 MeV.

To check whether the target waveform response shape changes from run to run, we used the

Kolmogorov-Smirnov test. This test is a nonparametric test for the equality of continuous, one-

dimensional distributions [30], thus giving us a quantitative comparison between a sample and a

reference distribution. Our reference shapes were taken to be the averages of response shapes from

groups of consecutive runs found to have the same response. The Kolmogorov-Smirnov probability

approaches 1.0 when the distributions are the same, and 0.0 when they are very different. Using

a reference waveform taken from the first group of runs in 2008, and comparing that reference

waveform to every run in 2008, in Figures 4.17 and 4.18, we clearly see vast changes in the response
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shape as time went on. There are seven groups of runs in 2008 with different responses as shown in

Figure 4.16. The first reflection occurs after 64 ns, which suggests animperfect impedance match at

the end of a 32 ns cable; possibly a reflection back and forth to the PMT base. Another reflection is

roughly at 210 ns which could originate from the positive ion signal in the PMT. Figure 4.19 shows

that using the correct reference shape for each group gives a Kolmogorov-Smirnov probability of

∼1.0 for the whole data set.
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Figure 4.16: The seven target waveform response shapes for year 2008. Theinset shows the same distribu-
tions in more detail.

Once the response shapes are known, we can design filters to transform each response into a

Gaussian peak. The filtering techniques will be described in detail in Section5.1.

In the previous calibration passes, 1 to 3, all observed quantities used to predict pulse times and

amplitudes (energies) in the target waveform were calibrated. It is possible, however, to improve the

predictions with an additional calibration step. This step takes into account any fluctuations of the

voltage applied to the target scintillator PMT or possible modifications to the readout electronics.

We performed a three-peak fit to the filtered target waveform selecting only π→ µ→ e events

with three well-separated pulses. This fit allows all parameters for each pulse to be free in order
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to obtain the best time and amplitude of each pulse. The difference between thefit times and the

predicted times gives accurate offset corrections for the pion and positron pulse times, Figures 4.20

and 4.21. The ratio of fit amplitude to predicted amplitude results in the calibration corrections

to the pion and positron pulse amplitudes. In addition, we determine the scale factor by requiring

the integral of the monoenergetic muon pulse to be equal to 4.12 MeV. This gaincorrection as a

function of run is shown in Figure 4.22.

Since the filtered waveform pulses closely resemble Gaussian pulses, the option exists to fit the

waveforms with analytical Gaussian pulses. As the response shapes andfilters change for different

run ranges, we must then determine the standard deviation,σ, of the Gaussian pulse for each particle

and for each run range. Theσ values are plotted versus run number in Figures 4.23–4.25.
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Figure 4.17: Kolmogorov-Smirnov test for each run, using the average response shape from the first group
of runs as the reference distribution.
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Figure 4.18: Kolmogorov-Smirnov test for each run, using the average response shape from the third group
of runs as the reference distribution. The third reference is similar to a few other later groups.
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Figure 4.19: Kolmogorov-Smirnov test for each run, using the average response shape from the appropriate
group of runs as the reference distribution. Low values correspond to runs with low statistics.
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Figure 4.20: Offset correction for tπ prediction versus run number in 2008.
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Figure 4.21: Offset correction for te prediction versus run number in 2008.
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Figure 4.22: Target waveform gain correction versus run number in 2008.
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Figure 4.23: Determination of the sigma for the analytical Gaussian bestresembling the pion pulse shape.

Run Number
83600 83800 84000 84200 84400 84600 84800

 (
ns

)
µσ

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Figure 4.24: Determination of the sigma for the analytical Gaussian bestresembling the muon pulse shape.
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Figure 4.25: Determination of the sigma for the analytical Gaussian bestresembling the positron pulse
shape.
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4.3 CsI Calorimeter Calibration

Of critical importance is the energy calibration of the CsI calorimeter. Most ofthe energy of the

final-state particles (usually positrons) will be deposited in the calorimter. We must therefore apply

gain correction factors to compensate for variations in high voltages appliedto the photomultiplier

tube bases and variations in temperature of the crystals which affects light yield. The gain factors

translate the recorded values into physical energy deposited, in MeV.

The initial method for calibrating the CsI crystal energy gains was as follows. An uncalibrated

energy distribution for each crystal was created according to the cuts listed in Table 4.1. Two sample

distributions are shown in Figure 4.26. Since only events satisfying the high trigger logic, see (3.3),

are plotted, we have a clear indication of the neccesity of this gain calibration.The uncalibrated

energy distribution for crystal 48, Figure 4.26(a), shows the thresholdaround 53 MeV, while crystal

49, Figure 4.26(a), appears to have the threshold set around 50 MeV.The apparent trigger threshold

level is dependent on both the high voltage applied the the photomultiplier tubes and the light yield

of the individual crystals.
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Figure 4.26: Initial CsI energy calibration method for crystals(a)48, and (b) 49, demonstrating the lack of
precision in the method for crsytal 48.

This initial method then set the bin content of all bins with bin content less than 10% of the
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Table 4.1: The old cuts for finding the upper Michel energy edge for use incalibrating the CsI crystal
energies.

Cut Description
Crystal ID(ECsI,max

e ) Max. Energy is deposited in crystal of interest
TRHigh = 1 Only high trigger events, see (3.3)

NDecayTrack= 1 One decay track
Decay Particle ID = e+ Only consider positrons

LTGT
e > 0 Require a valid target pathlength

EPH
e > 0 Require energy in hodoscope

maximum bin content to zero in hopes that the only remaining peak was that resulting from the

upper edge of the Michel energy shape. The peak from the monoenergeticπ→ e positron was thus

ignored. The resulting distribution was fit with a Gaussian and the mean value for the Gaussian fit

for each crystal determined the gain correction factor to be applied such that the Michel positron

upper energy endpoint was the same for all crystals.

As you can see from Figure 4.26(a), this method was not very precise. The intrinsic resolu-

tion of some crystals was just not good enough, and problems arose whenthe high voltage setting

for a particular crystal was significantly far from an ideal setting. It alsorequires a stable trigger

threshold.

A new method for calibrating the CsI crystal energies was devised using thetarget waveform

analysis techniques that will be discussed in Chapter 5. Using fits to the target waveform we were

able to get clean energy distributions from the monoenergeticπ→ e positron thus obtaining the best

physical quantity with which to calibrate our detectors.

Now considering the same crystal 48, for the same range of runs, we imposed theπ→ e selection

cuts in Table 4.2(b) to create the distribution with the sharp monoenergetic peak shown in Figure

4.27(b). Unfortunately these cuts could not completely isolate theπ → e process. Since that was

the case, the distributions were sometimes contaminated withπ→ µ→ e events and produced the
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peak of Michel events leaking into the high trigger sample. Figure 4.28(b) shows crystal 8 as an

example. To overcome this drawback, we obtained a sampleπ→ µ→ e distribution using the cuts

in Table 4.2(a). Thisπ → µ → e energy distribution was then scaled down by a factor 0.003 and

added to theπ→ e distribution, producing the combined distributions shown in Figures 4.27(c)and

4.28(c).

The resulting combined energy distributions were fit with a function,f , consisting of two parts:

a Crystal Ball function [68, 59, 38] ,fCB, and an analytical approximation to the sequentialπ →

µ → e decay energy distribution,fEπ→µ→e. The Crystal Ball function consists of a Gaussian peak

with mean,ETotal, and sigma,σ, and a power law tail. The Crystal Ball function is described in

more detail in Section 6.5.1. The function describing theπ→ µ→ e energy is,

fEπ→µ→e = N

×


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∣

∣
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(

ETotal−p3
p4

))∣

∣

∣
for 2< ETotal ≤ p3 ,

1000exp(p3−ETotal) for p3 < ETotal,

(4.5)

whereN is the normalization,pi are parameters governing the shape, and erf( ) is the error function.

In particular, p3 is related to the upper Michel positron energy endpoint. Typical values for the

parameters are:p1 = 3.36 MeV, p2 = 44.23 MeV, p3 = 53.21 MeV, andp4 = 1.37 MeV.

The new method is much more reliable and has better fit convergence. Nevertheless, due to

limited event statistics in several crystals for short run ranges between high-voltage changes we

must visually inpect each fit. With this method, the mean of the Gaussian part of the Crystal Ball

function, i.e., theπ→ e energy peak, is used to match the gains.
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Table 4.2: The new cuts for finding the(a)π→ µ→ e and (b) π→ e energy distributions. The two distri-
butions are then added to form a combined distribution whichis fit with a Crystal Ball and Michel energy
function.

(a)

Cut Description
Crystal ID(ECsI,max

e ) Max. Energy is deposited in crystal of interest
∆χ2 < 0 More like a 3-peak waveform, see (5.16)

χ2
3-peak< 6 Reasonable 3-peak fit

Nµ candidates= 1 Restrictive cut removing background
NDecayTrack= 1 One decay track

Decay Particle ID = e+ Only consider positrons
LTGT

e > 0 Require a valid target pathlength
EPH

e > 0 Require energy in hodoscope

(b)

Cut Description
Crystal ID(ECsI,max

e ) Max. Energy is deposited in crystal of interest
∆χ2 > 0 More like a 2-peak waveform, see (5.16)

χ2
2-peak< 6 Reasonable 3-peak fit

NDecayTrack= 1 One decay track
Decay Particle ID = e+ Only consider positrons

LTGT
e > 0 Require a valid target pathlength

EPH
e > 0 Require energy in hodoscope
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Figure 4.27: New CsI Calibration for crystal 48.(a) with cuts selecting Michel events, and(b) with cuts
selectingπ→ eevents.(c) combination(a)and (b) along with a fit.
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Figure 4.28: New CsI Calibration for crystal 8.(a) with cuts selecting Michel events, and(b) with cuts
selectingπ→ eevents.(c) combination(a)and (b) along with a fit.
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Chapter 5

Target Waveform Analysis

Thanks to continuing advances in waveform digitizer performance and increasingly powerful data

acquistion systems it has become common practice to record complete signal traces of particle

detectors. The knowledge of the full waveform offers many advantages compared to traditional

readout schemes using charge integrating amplifiers and fixed-thresholdtiming discriminators cou-

pled to amplitude and time digitizers (ADCs and TDCs). Both low frequency baseline fluctuations

and high frequency noise (oscillations) can be taken into account. Particleidentification by pulse

shape discrimination becomes straightforward. Deadtime-free time coincidences between different

detectors are implemented by direct binwise multiplication of waveforms. Overlapping signals re-

sulting from pulse pile up or decay sequences can be reconstructed. A large portion of this chapter’s

contents is also presented in a soon to be published paper [60].

A measurement of theπe2 branching ratio with 0.05% relative precision requires categorical

identification of the pion decay mode. Due to the energy resolution of the PEN detector, a sig-

nificant portion of theπ → e events overlap with the several orders of magnitude more abundant

Michel positron events. As will be discussed later (Section 6.5), we need tofind precise probability

70
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distribution functions for each observable in our final analysis, and forevery process existing in the

data. We will employ an in-depth analysis of our digitized target waveform signals.

In Section 5.1 we present the finite impulse response (FIR) filtering of waveforms. The method

has been applied before to waveforms with much lower sampling frequencies, for example in the

treatment of echoes in seismology [65] and acoustics [4], but is so far practically unknown in the

particle physics community.

In Section 5.2 we discuss algorithms applied to the resulting filtered waveforms inorder to

identify overlapping signals. Fixedχ2 fit parameters account for constraints on time and amplitude

of the signals involved. Such constraints on the fit parameters may be intrinsic(as for the muon

amplitude inπ+ → µ
+
νe decays at rest) or dependent upon additional information supplied by

other detector subsystems. In Section 5.2.1 we explain theχ2 fitting methods used in the PEN

experiment analysis. We demonstrate that different classes of events can be reliably reconstructed,

even when signal pulses occur simultaneously.

5.1 Waveform Filtering

Particle detectors produce signals with intrinsic shapes depending not onlyon the type of detector

but also possibly varying with type of particle, the temperature, chemical contaminations, etc. Here

we focus on fast plastic scintillators (with a main decay component of 2–3 ns). The intrinsic signal

rise time is usually very short, on the time scale of the photon detector response, and can thus be

ignored.

In practice, the observed analog signals may show considerable deviations from the intrinsic

light response, mainly because of variations in the path length of the scintillationphotons until

detection with PMTs. The time it takes the scintillation light to reach the PMTs depends on the
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detector geometry, the wrapping or coating, a possible wavelength shifter,and the refractive indices

involved. Photons reaching the PMT photocathode are distributed statisticallyaround the envelope

of the primary detector signal and these fluctuations have to be largely integrated for optimal energy

resolution.

Further distortions are caused by the response of the photocathode (transit-time spread of pho-

tomultipliers, after pulsing), amplifiers (finite bandwidth, ringing), transmissionlines, or impedance

mismatching. These effects show no statistical fluctuations and can thus be perfectly removed by

signal filtering.

Filtering is a form of signal shaping which can be described by a convolution integral,

a′(t ′) =
∫ t ′

−∞
f (t ′− t) ·a(t) dt , (5.1)

with a(t) the input signal anda′(t ′) the output signal of the filterf (t ′− t). Most familiar are simple

passive filters based on RC networks or clip cables for which analytic expressions can be derived in

many cases. Such analog filters are limited to real time applications.

For digitized signals the convolution integral turns into a sum, and (5.1) translates into a vector

equation,

w′[n] =
n+M2

∑
m=n−M1

f [n−m] ·w[m] , (5.2)

where vectorsw[m] andw′[n] represent the digitized input and output waveforms, respectively. The

filter array f has been truncated toM1 forward bins and extended to includeM2 bins describing tails

“running back in time” (known as acausal filtering, see below). The choice for the array boundaries

M1 andM2 depends on the application. In case of offline software filtering the waveforms them-

selves are finite in most cases and care has to be taken that the recorded regions next to the signal
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region of interest are sufficiently wide to accomodate the filter array.

The filter described by (5.2) is known in the literature as a finite impulse response (FIR) filter of

orderM = M1+M2−1. FIR filters with all but two coefficients equal to zero can be used to remove

the reflection caused by an incorrectly terminated transmission line. Low order electronic FIR

filters are used in real time to suppress multiple reflections (ghost signals) in TV broadcasting [70].

FIR filters of order 20–40 have been realized in field-programmable gate arrays (FPGA) to remove

unwanted reflections in radar signals [51].

Higher order FIR filtering is so far limited to offline data processing applications. In those cases

the filter coefficients can be carefully calibrated and adjusted when conditions change.

5.1.1 Waveform Filtering in PEN Analysis

The PEN experiment data analysis requires distinguishingπ
+ → e+ events from theπ+ → µ

+ → e+

decay chain. Digitized waveforms for a large set of pion decay events must be reliably sorted into

one of the two categories in order to reveal the low-energy “tail” of the calorimeter response to

the 69.3 MeVπ+ → e+ positrons, otherwise masked by the positrons from muon decay. In this

experiment the muons live entirely inside the target. Therefore we rely heavily on digitized target

waveform analysis to distinguish between the two pion decay modes.

We use data recorded by the PEN experiment to illustrate the method of filtering described in the

previous section. In this experiment an∼ 85 MeV/c π
+ beam passes through a thin beam counter

and a four wedge-shaped degrader counters before stopping in a plastic scintillating target. The

scintillation light from each of the six detectors is recorded with waveform digitizers1 for offline

analysis. A clean measurement of the target waveform response function is obtained by selecting

1Acqiris High Speed 10-bit PXI/CompactPCI Digitizer, Model DC282. 4 Channels, each with 2 GS/s.
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Figure 5.1: Filter Array, f [n] used to shape target
waveform.
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pion reactions with protons in the final state since these events lead to a single target signal without

delayed decay products (see Figure 5.3). The determination of the response shape and its variation

during data collection is discussed in more detail in Section 4.2.

The raw waveformw not only shows various exponential components and reflections in the

trailing edge but also a small “shoulder” on the rising edge. The signal fallsmuch slower than

expected from the primary detector signal, so its shape is completely dominated by the impulse

response of the system. The shoulder has been observed before in photomultiplier signals and is

explained by electric cross talk in the final dynodes of the photomultiplier whichreaches the anode

electrode ahead of the slower main signal.

The filter coefficients were numerically optimized in an iterative procedure to produce a Gaus-

sian output waveformw′ of given sigmaσw′ . A Gaussian shape is advantageous for the following

fitting procedures. The width of the resulting Gaussian distribution was minimizedto the point

where the energy resolution starts to deteriorate. As is illustrated in Figure 5.4this situation was
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reached atσw′ ∼ 3.0, which corresponds precisely to theσ of a Gaussian fit to the rising edge of the

unfiltered pulse.
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Figure 5.1 shows the corresponding filter arrayf with order 430 (M1 = -80,M2 = 349). Around

n= 80 the distribution resembles the sinc(n)≡ sinn
n wavelet which describes the ideal low-pass filter

associated with our 2 GHz sampling frequency. Whereas the periodicity of the filter coefficients is

maintained over the full array, the amplitude modulation deviates strongly from the 1/n dependence

in the sinc function, reflecting the irregularities in the trailing edge of the input waveform.

The filter, f , was developed using an iterative procedure. The initial filter was an array of zeros

with the exception of one entry which was equal to 1, which when applied to thewaveform did not

change it. The difference,d, between the filtered response shape,w′, of our system and the desired
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Gaussian shape,g, was used to build the filter as in (5.3):

d [n] = w′ [n]−g[n] ,

f ′ [n] = f [n]+ (0.1)(d [n]) . (5.3)

The modified filter is then applied to the response shape as in (5.2) and (5.3) are performed again.

This procedure is repeated until the sum of the differences at each point in the array,∑n |d [n] |,

asymptotically reaches a minimum value.
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Figure 5.5: Filtered target waveform response function and Gaussian fit, demonstrating a slight discrepancy
near the peak.

After filtering, the numerical reponse function is determined from events withwell separated

pulses. Initially, Many pulses are averaged; the resulting waveform is subsequently interpolated to

produce a response function with a tenfold increase in the number of bins.Figure 5.5 shows the

original averaged response pulse, the interpreted response pulse, and a Gaussian fit. The resulting

filtered pulse shape is not exactly Gaussian, necessitating the use of a numerical response function

in the minimization. The minimization process does not converge properly when the theoretical
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pulse shape has discrete heights, therefore the continuous height of thepulse is calculated as

A(t) = Ai=⌊t⌋+c(t −⌊t⌋−0.5) , (5.4)

where the coefficient

c=























Ai=⌊t⌋+1−Ai=⌊t⌋
2 for t −⌊t⌋ ≤ 0.5 ,

Ai=⌊t⌋−Ai=⌊t⌋−1

2 for t −⌊t⌋> 0.5 ,

and the notation⌊t⌋ denotes the floor function which maps the real numbert to the largest integer

not greater thant.

5.2 Waveform Fitting

The filtered waveform contains an unknown number of detector signals, each parametrized by their

shape, time, and amplitude. Without additional constraints on amplitudes, a singlepulse can always

be interpreted as a pile up of an unknown number of simultaneous signals. Pileup signals may

originate from a single event with more than one particle in the final state or from random coin-

cidences (in particular with pulsed beams). For the correct interpretation additional constraints on

the allowed values of the free parameters are required: thea priori probability distributions are no

longer constant but peak at some prefered value. Signal times may be deduced from other detectors

hit by the same particle. Probabilities for signal amplitudes may follow theoreticalprejudice, e.g.,

an expected energy-loss distribution.

A further reduction of ambiguities can be achieved by considering only the signal sequences

expected from a number of plausible hypotheses. Each of them would notonly give the values

of the associated free parameters, but also a measure of the likelihood for the observed waveform
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which can be used to discriminate between these different interpretations.
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Figure 5.6: Target waveform of aπ+ → e+ event. (a) raw and filtered waveforms,(b) filtered waveform
before and after subtraction of predictedπ and e pulses, and(c) fits for both the 2-peak and the 3-peak
hypothesis.

Traditionally, the waveforms are analyzed by the method of least squares which minimizes the

reducedχ2 value with respect to the values of the free parameterspi in the model. In this case it

would read:

χ2
red≡

1
N−Nf

N

∑
n=1

(

w[n]−wfit [n]
σw[n]

)2

, (5.5)

with Nf the number of free parameters of the hypothesis under study. Here the error σw[n] is mostly

limited by the digital noise of the digitizer with little dependence onw[n]. The effective number of
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bits (ENOB) of present day digitizers depends strongly on the sampling rate. At frequencies above

1 GHz the ENOB drops below 8 even when the supplied number of bits can be much higher. A gen-

eralization of (5.5) can include correlations between neighboring channels. Such an approach might

give some improvement in fit performance but otherwise leads to a large increase in computing time.

5.2.1 Waveform Fitting in PEN Analysis

Most events recorded in the digitized target waveforms contain pulses which overlap. After filtering,

as in Figure 5.6(a), the two hypotheses (possible decay modes) are fit to the waveform using the

minimumχ2 technique, as in Figures 5.6(c) and 5.7(c). The fits use information gathered in other

detectors to accurately predict and constrain the times and energies (amplitudes) of theπ+ and e+

pulses.
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Figure 5.7: Target waveform of aπ+ →µ
+ → e+ event.(a)raw and filtered waveforms,(b) filtered waveform

before and after subtraction of predictedπ and e pulses and(c) fits for both the 2-peak and the 3-peak
hypothesis.

Predicted Parameters

For each target waveform fit (each event) there exists six initial parameters. The monoenergetic

muon amplitude (4.12 MeV) is fixed toAPred
µ+ with σA

µ+ ∼ 216 keV, see Figure 5.4. This 5% mea-

sured resolution demonstrates the performance of the active target counter. Allowing the muon

amplitude any freedom weakens the ability to resolve the pion and positron, especially when the

pulses are overlapping. The pion and positron times,t+π andt+e respectively, are predicted with such

high precision from external detectors (σt
π+

∼ 65 ps,σte+ ∼ 492 ps) that we fix the parameters to
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the predicted values.

The pion time in the waveform,tπ, is predicted as,

tPred
π = t wAD

π +
s

βπc
, (5.6)

wheres is the distance between the degrader and the pion decay vertex in the target.We measured

s/c to be 0.18 ns. The most precise time of the pion in the wedged degrader is given by the pion

time in each of the four wedges, weighted by the energy deposited in the wedges,

t wAD
π =

1
2

(

EL
π tL

π +ER
π tR

π

EL
π +ER

π

+
ET
π tT

π +EB
π tB

π

ET
π +EB

π

)

, (5.7)

where L, R, T, and B, correspond to the left, right, top, and bottom wedges, respectively. The factor

βπ corresponds to,

βπ =
tTOF
γ

tTOF
π

,

wheretTOF
i is the time of flight of particlei between the upstream beam counter and the degrader.

The predicted positron time in the target waveform is,

tPred
e+ = tPH

e+ − (0.6 ns)

(

1
sin(θ)

−1

)

, (5.8)

wheretPH
e+ is the time the positron hits the plastic hodoscope as recorded by two TDCs2. The time

is taken as the mean time recorded from both ends of the hit hodoscope stave. The factor of 0.6 ns

is the difference in the time of flight of the positron from the target to the furthest point on the

cylindrical hodoscope and from the target to the closest point on the hodoscope.

2Lecroy Model 1877 Fastbus 96 channel multihit time-to-digital converters [31]
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The next two predicted quantities take into consideration the precision to whichthe π
+ and

e+ amplitudes are known. The energy of the beam pion is determined from plasticscintillating

detectors in the beamline. Subtracting the energy deposited in the upstream beamline elements from

the energy determined from the pion time-of-flight between them results in an amplitude prediction

(typically∼13 MeV) with an uncertaintyσAπ
∼ 716 keV. The pion energy prediction is written as,

EPred
π = γ mπ− ∑

i=L,R,T,B

EDEG, i
π , (5.9)

whereγ = 1/
√

1−β2
π . We found the relation between energy and amplitude for pions to beAPred

π =

EPred
π /7.732, which was constant throughout data collection and takes care of thelight quenching

factor.

The amplitude of the positron pulse in the target waveform is directly related to the path length

of the positron in the cylindrical target,LTGT
e+ ,

APred
e = kLTGT

e , (5.10)

wherek= 1.79 MeV/cm is the coefficient including the specific energy loss, dE/dx, of the positron

and the relation between energy lost and amplitude of the pulse. Due to geometrical effects and

the nature of the algorithms used to recontruct the path length, the difference of the positron pulse

amplitude from the fit to the predicted positron pulse amplitude resembled a Vavilovdistribution

smeared by photoelectron statistics. The usage of minimumχ2 fits in data analysis assumes the

fit parameters follow normal (Gaussian) distributions. Therefore our fitting analysis will work best

when our parameters each follow a Gaussian distribution.

Taking the logarithm of the amplitude ratio makes this distribution symmetric about zero. Fur-
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thermore, multiplying by the square-root of the path length helps correct for a slight path-length

correlation. In total, these modifications result in symmetric predictions and allowus to calculate

the uncertainty of the prediction to beσAe ∼ 878 keV, where the typical positron energy in the target

is roughly 2–3 MeV. It has been found that fixingAπ andAe to their predictions gives better results.

LTGT
e is calculated from the tracking of the incoming beam pion and the outgoing decay positron.

The componenets of the vertex of the pion stopped in the target,vπ, are given by

xwAD
π = kLR

ELeft −ERight

ELeft +ERight
, (5.11)

ywAD
π = kTB

ETop−EBottom

ETop+EBottom
, and (5.12)

zπ =
( pπ+

64.56 MeV/c

)3.5
, (5.13)

with kLR andkTB constant, andpπ+ equaling the momentum of the pion as it enters the target. The

positron tracks from the wire chambers give the point at which the positronexits the target,ve. With

this information, the path length of the positron in the target becomes,

LTGT
e =

√

(vπ−ve)
2−D2 , (5.14)

whereD is the calculated distance of closest approach between these two trajectories.

You may have noticed that this leaves only one free fit parameter3, namelytµ+ . The fit reaches

convergence more often and more quickly when we are able to set the initial value of the free

parameter as close as possible to the true value.

We predict the muon time in the target waveform by first subtracting the two pulses with the

3A considerable effort was put forth towards fitting with other free fit parameters. This work is described in more
detail in Appendix C.
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Figure 5.8: Filtered waveform before and after sub-
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The subtracted waveform is scanned for a possible
muon pulse to obtain a prediction for the muon time.
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predicted pion and positron parameters from the filtered waveform. The resulting waveform,w′′ as

in Figure 5.8, is then scanned for the center bin,nc, such that the integral of the bins surrounding

nc is closest to 4.12 MeV (the energy of the stopped muon from theπ→ µ decay). The predicted

muon time is the amplitude-weighted mean of the three bins surroundingnc,

tPred
µ =

nc+1

∑
n=nc−1

(n)w′′ [n]

nc+1

∑
n=nc−1

w′′ [n]

. (5.15)

Minimization

The target waveform is then fit using both a two-peak (π
+ → e+) fit function and a three-peak (π+ →

µ
+ → e+) fit function. The minimization is executed usingMINUIT 2, the C++ object-oriented

implementation of the ubiquitousMINUIT minimization package [41]. The “combined” algorithm

is used, such that if theMIGRAD [37] method fails its first attempt, a Simplex minimization is
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performed, and thenMIGRAD is tried once more. Ocassionally the “combined” algorithm fails, at

which point the fit is attempted once more with the “scan” method. This method scans over the

free parameter values within the parameter limits and always returns the best parameter values. The

“scan” method is much slower, but there is no need to worry about lack of convergence. An example

showing both fits is shown in Figures 5.6(c) and 5.7(c).

Set
predicted fit
parameters

Filtered
Waveform

Fit with
MINUIT2

“combined”

Did fit
converge?

Fit with
MINUIT2

“scan”

Store fit
results

Continue
analyzing

event

no

yes

Figure 5.10: Waveform fit flowchart demonstrating the check for convergence and the
second fit attempt with the “scan” method when the “combined”method fails.

Fitting the filtered waveforms with a series of Gaussian pulses instead of fitting the raw unfil-

tered waveforms with the known (averaged) responses has its benefits and drawbacks. Filtering,

while isolating the pulses, removes some information contained in the tails of the pulses. The filter-

ing results in only a few percent poorer temporal resolution when compared to unfiltered waveform

fits.
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On the other hand, there is a significant increase in the amount of time it takes each raw wave-

form fit to converge. For the PEN target waveforms, we see a∼30% increase in speed when fitting

filtered waveforms, Figure 5.11.

Using the Fit Results

The pion decay mode can then be determined based on theχ2 difference between the two fit hy-

potheses,

∆χ2 = χ2
3-peak−χ2

2-peak. (5.16)

Considering only events for which∆χ2 > 0 will isolate a pure sample ofπe2 events. The sample

will help determine the probability distribution function for the low-energy tail oftheπ+ → e+νe

positron energy spectrum to be used in a maximum likelihood analysis to determinetheπe2 decay

branching ratio. Figure 5.12 clearly demonstrates the power of theχ2 fits in isolating the decay

channels. Figure 5.13 shows the characteristic Michel positron energy spectrum for negative values

of ∆χ2 and a well separatedπe2 positron energy peak and low-energy tail.
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Figure 5.13: ∆χ2 results showing the michel
positron energy spectrum for∆χ2 < 0 and the
69.3 MeV positron energy peak and low-energy tail
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How many legs does a dog have if
you call the tail a leg?
Four. Calling a tail a leg doesn’t
make it a leg.

Abraham Lincoln

Chapter 6

Maximum Likelihood Estimation of Rπe2

We have chosen to use the maximum likelihood (ML) method to extractRπe2 from our measurement

data. In this chapter we will review the principle of maximum likelihood and developthe method in

the context of the PEN experiment.

6.1 Introduction to the Likelihood Technique

The probability of obtaining any exact value of a continuous random variable is zero since there

exists an infinite number of possible values. Therefore it is only meaningfulto say the probability

that a result of an experiment lies within a certain interval. Hence we obtain a probability distribu-

tion function (PDF),P(x), such that the probability to obtain a measurement betweenx andx+dx

is P(x)dx, while
∫

P(x)dx= 1.

Now consider a PDF,P(x;θ), in which the shape of the distribution is not known exactly, but

can be described with the parameterθ. Both x and θ can be sets of data,~x, and parameters,~θ,

not necessarily of the same dimension. When we make a series ofN independent observations of

88
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events,xe, we construct the joint PDF as,

L
(

~x;~θ
)

= L
(

x1,x2, ...,xN;~θ
)

=
N

∏
e=1

P
(

~xe;~θ
)

, (6.1)

which depends on both the measurements,~xe, and the parameters,~θ. After the measurement (or

simulation) data are collected, however, the~xe are fixed, andL , known as thelikelihood function,

becomes a function of~θ only. For practical purposes in analysis, it may be easier to deal with sums

than products, so we define the log-likelihood as,

ℓ≡ lnL
(

~x;~θ
)

= lnL
(

x1,x2, ...,xN;~θ
)

=
N

∑
e=1

lnP
(

~xe;~θ
)

. (6.2)

The Principle of Maximum Likelihoodstates that the best estimate for a parameterθ is that value

which maximizes the likelihood (or log-likelihood) function. The ML method provides a unique,

unbiased, minimum variance estimate for the parameters of interest for a largeenough sample [30].

Maximum Likelihood in the PEN Experiment

A log-likelihood function for the PEN experiment analysis can be given by

ℓ= lnL = ln

(

N

∏
e=1

M

∑
i=1

fiPi(~xe)

)

=
N

∑
e=1

ln

(

M

∑
i=1

fiPi(~xe)

)

(6.3)

whereN is the total number of observed events entering the likelihood analysis,M is the number

of processes we’re considering,fi is the fraction of events in processi, Pi(~xe) is the probability to

find an event in processi given the observed values of~xe (e.g., time and energy). In this type of ML

analysis, we assume the shapes of thePi are known exactly and replace the parametersθi with the
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fractions of each process,fi . Maximizing this likelihood function gives the most likely values offi ,

which we will denotef̂i .

The PEN measurement data contains five main processes that we will consider. The other

processes, if any, occur at such a low level that they are not significant in this analysis. The two

signal processes are theπ → e andπ → µ → e decays with fractions denoted asfπe2 and fπµ2,

respectively. The three background processes include: (1) accidental coincidences with fraction

fAcc, (2) prompt pion-nucleon reactions which result in a proton final state, with fraction fHad, and

(3) events in which the pion decays in flight (DIF), with the resulting muon coming to rest in the

target, with fractionfDIF.

About one third of the recorded events are pion-nucleon reactions in thedegrader and target. In

the energy window from 60 to 80 MeV we’ve collected more proton events thanπ→ e positrons. A

background of this magnitude means that we have to separate these processes better than 1:10000

(or rather understand the expected overlap at this level).

A decay-in-flight event ends up depositing a muon instead of a pion in the target at the time

of theπSTOP signal. DIF kinematics are such that muons emitted forward will punch allthe way

through our relatively thin target, and muons emitted backward will not reachthe target, or will stop

in the first severalµm of the target depositing a reduced amount of energy, thus making a distinct

signal from a pion. Sadly, a sufficient number of muons (pions decayingsideways) will stop in the

target with energy depositions closely matching those of a pion stop. These events will mimic valid

2-peak events in the target waveform, but will populate theπ→ e low-energy “tail” with bona fide

Michel positrons.

The variance off̂i is given byV ii = σ2
ii , whereV is the covariance matrix. The elements of

the covariance matrix can be calculated as the inverse of the expectation value of the second partial
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derivative of the negative of the log-likelihood function,

V−1
jk = E

[

∂2(−ℓ)

∂ f j∂ fk

]

. (6.4)

The expectation value can be estimated in the sample mean by setting the parametersto f̂ to give

V−1
jk =−

N

∑
e=1

∂
∂ f j

Pk(~xe)
M
∑

i=1
fiPi(~xe)

∣

∣

∣

∣

∣

f= f̂

=
N

∑
e=1

Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

∣

f= f̂

. (6.5)

When the data have been prescaled (e.g., by a factor 64), one can say that an event had an

efficiency,εe, of 1/64. The corresponding weight,we, for that event is given bywe = 1/εe = 64.

The likelihood function then takes the form

ℓ ′ =
N

∑
e=1

we ln

(

M

∑
i=1

fiPi(~xe)

)

(6.6)

It turns out that the estimatêf obtained by maximizingℓ ′ is still asyptotically normally distributed

about the true value [30]. Using the second derivative matrix to calculate the variance as in (6.4) is

wrong, since it assumes every event has a weight of one. The correct prescription [30] is to take

V( f̂ ) = H−1H ′H−1 (6.7)

When estimated in the sample mean, the matrix elements can be calculated as

H jk =
N

∑
e=1

we
Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

∣

f= f̂

(6.8)
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H ′
jk =

N

∑
e=1

w2
e

Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

∣

f= f̂

(6.9)

Now if i = 0 corresponds toπ→ µ→ e andi = 1 corresponds toπ→ e we can propagate the

uncertainty in the ratio of branching fractionsRπe2 = f1/ f0 as follows:

(σR

R

)2
=

(

σ f0

f0

)2

+

(

σ f1

f1

)2

−2
σ f0σ f1

f0 f1
ρ f0 f1 , (6.10)

where the correlation coefficient

ρ f0 f1 =
covf0 f1

σ f0σ f1
=

V01√
V00

√
V11

, (6.11)

thus obtaining the propagated relative-uncertainty squared,

(σR

R

)2
=

V00

f 2
0

+
V11

f 2
1

−2
V01

f0 f1
. (6.12)

6.2 Approaches in Likelihood Analyses

Frequentist vs. Bayesian

Experimental results can be stated using the empirical (frequentist) interpretation or the subjective

(Bayesian) interpretation.

In frequentist interpretatation, the probability is viewed as the limit of the frequency of a result

of an experiment or observation when the number of identical experiments isvery large, i.e.,P(xi) =

lim
N→∞

(Ni/N). One disadvantage of this approach is thatP(xi) is not only a property of the experiment,

it also depends on the “ensemble, i.e., on allN repetitions of the experiment.
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Probability in the Bayesian interpretation is a subjective “degree of belief which is susceptible

to modifications upon further observations. The probability is written,

Pposterior(θ |x) =
f (x|θ)
f1(x)

Pprior(θ)

A guess at the prior is subjective and therefore unscientific. Bayes Postulate says if you’re com-

pletely ignorant aboutP(θ), then take all values ofθ to be equally probable. There are several

objections to this postulate, but experience has shown thatPposteriorusually converges to an identical

value after several experiments, regardless of the choice of prior.

Ordinary vs. Extended

The likelihood analyses discussed so far determine the parameters describing shapes of PDFs or the

relative fractions of the PDFs for processes contained in the sample. Thetotal number of events is

regarded as fixed.

Enrico Fermi decided to extended the ML method to include the total number of events as a

parameter to be estimated. The extension is obtained by multiplying the ordinary likelihood function

by a Poisson PDF expressing the probability of obtainingN events when the expected number isν,

L
(

~x;~θ
)

=
N

∏
e=1

P
(

~xe;~θ
)

→ LE

(

~x;~θ,ν
)

=
e−ννN

N!

N

∏
e=1

P
(

~xe;~θ
)

. (6.13)

Whether we use the ordinary maximum likelihood or extended maximum likelihood approach

depends on the question we are trying to answer. If we are measuring properties of tracks from

decay products of some particle and we want to determine its branchingratio, then the ordinary ML

is prefered. If, however, we are interested in its partial decayrates, then the extended maximum
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likelihood is required [47]. For the PEN analysis the choice is clear, we will use the ordinary

likelihood.

6.3 Parameterization of the Likelihood Function

Typically the value quoted for theπ → eν branching ratio isfπe2/ fπµ2. There is no reason why

we couldn’t present our result in a slightly different format. If we instead desired a result for

the ratio fπe2/( fπe2+ fπµ2) we could parameterize the likelihood function such that we obtain that

ratio directly. This parameterization would eliminate the necessity to propagate errors and would

automatically include any correlations betweenfπe2 and fπµ2. The parameterization of the likelihood

is then given by,

L =
N

∏
e=1

[(1−θ0)(1−θ1)(1−θ2)(1−θ3)Pπµ2 (~xe)

+θ0(1−θ1)(1−θ2)(1−θ3)Pπe2(~xe)

+θ1(1−θ2)(1−θ3)PHad(~xe)

+θ2(1−θ3)PDIF (~xe)

+θ3 PAcc(~xe) ] . (6.14)



CHAPTER 6: MAXIMUM L IKELIHOOD ESTIMATION OF Rπe2 95

The parameters,θi , are defined in terms of the original fractions,fi , as,

θ0 =
fπe2

fπµ2 + fπe2

θ1 =
fHad

fπµ2 + fπe2+ fHad

θ2 =
fDIF

fπµ2 + fπe2+ fHad+ fDIF

θ3 =
fAcc

fπµ2 + fπe2+ fHad+ fDIF + fAcc
. (6.15)

Thus the best estimate ofθ0 is the goal of the PEN experiment. This parameterization forfeits the

symmetry found in (6.3). The covariance matrix elements are again calculated using the expectation

value of the negative of the second derivatives of the log-likelihood function,ℓ= lnL , as in (6.4):

V−1
jk =

N

∑
e=1

[

1
L2

∂L
∂θ j

∂L
∂θk

− 1
L

∂2L

∂θ j∂θk

]

θ=θ̂
. (6.16)

All of the required partial derivatives ofL are given for reference in Appendix D. The corrections

to the covariance matrix due to the weighted events follow as in (6.7)–(6.9) with

H jk =
N

∑
e=1

[

we

(

1
L2

∂L
∂θ j

∂L
∂θk

− 1
L

∂2L

∂θ j∂θk

)]

θ=θ̂
, (6.17)

H ′
jk =

N

∑
e=1

[

w2
e

(

1
L2

∂L
∂θ j

∂L
∂θk

− 1
L

∂2L

∂θ j∂θk

)]

θ=θ̂
. (6.18)

6.4 Including External Constraints

Certain quantities in a likelihood analysis may be determined with some precision from an external

method. By external we mean using data collected possibly with other detector subsystems; the
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minimum requirement being that the same data do not enterboth the external constraint measure-

ment and the likelihood analysis. For example, one may fit side-bands of a distribution (outside the

domain of the PDF) to estimate a background. The incorporation of this external information into

the PEN likelihood function takes the form,

LC = C (θ3)L = e
− 1

2
(θ3−〈θ3〉)2

σ2
θ3 L (6.19)

Here we have measuredθ3 to be〈θ3〉 with an uncertainty ofσθ3. This is the new likelihood func-

tion we wish to maximize. As mentioned earlier, numerical recipes prefer to minimize functions.

Traditionally one minimizes,

− ln(LC ) = 1
2
(θ3−〈θ3〉)2

σ2
θ3

−
N
∑

e=1
ln [(1−θ0)(1−θ1)(1−θ2)(1−θ3) Pπµ2 (~xe)

+θ0(1−θ1)(1−θ2)(1−θ3) Pπe2(~xe)

+θ1(1−θ2)(1−θ3) PHad(~xe)

+θ2(1−θ3) PDIF (~xe)

+θ3 PAcc(~xe) ] .

(6.20)

Following (6.4) the variance-covariance matrix becomes,

V−1
jk =

[

1
C 2

∂C
∂θ j

∂C
∂θk

− 1
C

∂2C

∂θ j∂θk

]

θ=θ̂
+

N

∑
e=1

[

1
L2

∂L
∂θ j

∂L
∂θk

− 1
L

∂2L

∂θ j∂θk

]

θ=θ̂
. (6.21)
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Since the partial derivatives of the constraint term are,

∂C
∂θ j

=



















−θ3−〈θ3〉
σ2

θ3

e
− 1

2
(θ3−〈θ3〉)2

σ2
θ3 for j = 3,

0 otherwise, and

(6.22)

∂2C

∂θ j∂θk
=























(

(θ3−〈θ3〉)2

σ4
θ3

− 1
σ2

θ3

)

e
− 1

2
(θ3−〈θ3〉)2

σ2
θ3 for j = k= 3,

0 otherwise,

(6.23)

we see that the additional term due to the constraint only modifies thej = k = 3 element in the

variance-covariance matrix.

6.5 Probability Distribution Functions

Of critical importance in any maximum likelihood analysis are accurate probabilitydistribution

functions. The determination of the PDFs for many processes becomes tractable in that we are able

to obtain one-dimensional PDFs for each observable. When the observables are independent, the

total PDF for the process is just the product of all one-dimensional PDFs. We are able to make hard

multi-dimensional cuts on the data to obtain a clean sample in a selected observableto accurately

plot the distribution of that observable for a particular process. The preferred method of determining

PDFs is to obtain them directly from measurement data. In regions where sufficient isolation of

each process in measurement data is not possible, we supplement the PDF shape determination

with simulated data. The following sections will discuss each observable and the corresponding

PDFs in detail.
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Table 6.1: Cuts used to findπ→ µ→ e energy PDF. Only the first cut is used for this analysis. The second
and third cuts were found to distort the shape of the energy PDFs.

Cut Description
(te− tπ)> 4τπ Remove earlyπ→ e events
NMWPC2

Hit < 2 Remove backgrounds (no longer used)
Nµ candidates< 3 Conservative cut removing further BG (no longer used)

6.5.1 Total Energy

The first observable we will consider is the total energy deposited in all theactive detector elements

by the outgoing final-state particle. In the case of pion-nucleon reactions the final-state particle is a

proton, in all of the other cases we’re considering it is a positron. The total energy consists of the

energy deposited in the active target, the plastic hodoscope, and the CsI calorimeter,

ETotal = ETarget+EPH+ECsI . (6.24)

We are not including the energy deposited as the particle crosses the MWPCs, as it is a negligible

contribution.
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(a)ETotal for all e+ final-state processes.

 (MeV)totalE
10 20 30 40 50 60 70 80 90

P
ro

ba
bi

lit
y 

pe
r 

bi
n 

w
id

th

-710

-610

-510

-410

-310

-210

 e→ µ → πMeasured 
Cut Selection of

 e→ µ → πMeasured 
Corrected

 e→ µ → πSimulated 

(b)Corrected Michel PDF and simulation.

Figure 6.1: (a) The total energy for the four processes with a positron in thefinal state. Events with proton
final state were removed with cuts.(b) PDF for Michel positron energy will be obtained first from cuts. Then
the knownπ→ e contamination in the late time window is subtracted. We see the high energy tail does not
match simulation, as we cannot remove 100% of the pile-up background.
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We imposed cuts on the data to extract the shape ofETotal for theπ → µ → e process alone,

Table 6.1. The main software cut selects only events after four pion lifetimes,leaving behind many

π → µ → e sequential events while removing the exponentially decayingπ → e events. A sec-

ond cut requiring at most one hit in the outer wire chamber (NMWPC2
Hit < 2) would eliminate many

background events, but is highly energy dependent and distorts the shape of the energy distribution.

Therefore we do not use theNMWPC2
Hit cut. A third potential cut usesNµ candidates, which is a count of

potential muon peak candidates obtained by scanning the target waveformfor 4.12 MeV peaks. A

conservative cut requiringNµ candidates< 3 would eliminate any events with very large extra pulses or

more than two muon pulses, allowing us to suppress pile-up and/or accidentalevents.1 After cuts,

we were left with a high-energy tail consisting of events with two positrons in the same “track”,

pile-up events, or events with extra photons contributing to the total energy.The relative yield of

pile-up events in the high-energy tail comes out correct by construction.

A significant systematic uncertainty arises due to our lack of knowledge of the shape of the

ETotal low-energy tail for theπ→ e process. A Crystal Ball function [68, 59, 38],

f (ETotal;α,n,ETotal,σ) = N















exp
(

− (ETotal−ETotal)
2

2σ2

)

forETotal−ETotal
σ >−α

A
(

B− ETotal−ETotal
σ

)−n
forETotal−ETotal

σ ≤−α
(6.25)

was fit to the simulatedETotal. This function consists of a main Gaussian peak and a power-law tail

to the left.N is the overall normalization,ETotal andσ are the mean andσ of the Gaussian peak,α
1At the time of writing this dissertation theNµ candidates< 3 cut is not imposed and theπ→ µ→ e, accidental, and

pile-up processes all share the same PDF shape forETotal. The differences between these PDFs will be determined in a
future analysis thus removing a systematic shift in the branching ratio measurement.
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(a)π → e from simulation.
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(b)π → e from cuts, fit, and corrected.
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(c)After BG Subtraction.
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(d)Uncertainty in low-energy tail.

Figure 6.2: (a) “Crystal Ball” (CB) function fitted to simulated data.(b) Combined function: CB + Michel
shape is fit to the best “π → e” distribution we can obtain from cuts.(c) Subtracting BG component and
again fitting with CB function.(d) A demonstration of PDFs with extrema of CB fit parameter uncertainties.

andn describe the shape of the tail and,

A=

(

n
|α|

)n

exp

(

−|α|2
2

)

, and (6.26)

B=
n
|α| − |α| . (6.27)

The bestETotal distribution for theπ→ e process we can obtain using cuts to measurement data

still contains a significant number of events due to the accidental process and π → µ → e events

as well as a high-energy tail similar to the one described above in the Michel energy distribution.

We are able to determine a PDF by fitting a function with the Crystal Ball shape combined with an
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Table 6.2: Cuts used to findπ→ eenergy PDF.

Cut Description
−2.0ns< (te− tπ)< 0.75τπ Remove lateπ→ µ events
(

∆χ2 >−5
)

∪ (Nµ candidates< 2) Conservative cut removing further BG

analytical form of the Michel distribution2 to the cut-based distribution as in Figure 6.2(b). We can

then obtain the energy PDF with two methods.

Using the first method, we subtract the background component as shownin Figure 6.2(c). We

then fit this subtracted distribution with the Crystal Ball function obtaining,

N = 0.001478±0.000005,

ETotal = 69.023±0.014 ,

σ = 2.547±0.010 ,

α = 0.761±0.019 , and

n= 8.508±2.653 .

(6.28)

Note the large uncertainty onn. We set the low-energy tail of the PDF to these function values and

use the exact shape of the measurement for the peak and high-energy regions.

The second method relies heavily on simulation. The parameters governing theshape of the

2The analytical representation of the Michel energy distribution is given in (4.5) and was described in Section 4.3
where it was used to calibrate the CsI energies.
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low-energy tail are fixed to the values determined in the fit to simulation, Figure 6.2(a),

N = 0.08332±0.00005,

ETotal = 69.511±0.002 ,

σ = 1.780±0.001 ,

α = 0.670±0.001 , and

n= 5.007±0.012 .

(6.29)

The PDF is again taken to be the exact shape of the measurement in the peak and high-energy

regions, and the PDF is set to the values of the Crystal Ball fit function in thetail region.

Using the uncertainties on each fit parameter,p, we can then set each parameter top±σp in

the appropriate direction that either maximizes or minimizes the probability in the tail region. The

results are two PDFs corresponding to±1σ fluctuations in the tail that we can use to estimate the

systematic uncertainty due to our lack of knowledge about the low-energy tail shape. Figure 6.2(d)

shows the PDF shapes from the first method demonstrating the huge uncertainty in the tail region,

amounting to a∼ 2 % uncertainty onRπe2. Relying on the current set of simulated data, as in the

second method, the uncertainty on the tail is drastically reduced such that our systematic relative

uncertainty onRπe2, due to the tail, becomes∼ 0.33 %3. Generating a much larger set of simulated

data can push this uncertainty lower. The shape of the low-energy tail from measurement is still

under study, and will ultimately set the systematic uncertainty limit.

The data set that we chose to fit has prompt pion-nucleon reactions removed. The cuts used to

3Performing the minimumχ2 fit as in Section 6.6 (Stage 1), using the “extrema” PDFs (similar to Figure 6.2(d), but
from the second method), we are able to quantify our systematic uncertainty due to the low-energy tail in theETotal PDF

for theπ→ e process. Including this uncertainty in (6.46) we obtainθ̃(
χ2)

0 = [1.1164±0.0025(stat.)±0.0037(syst.)]×
10−4, where the systematic relative uncertainty is 0.33%.
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Figure 6.3: ETotal for pion-nucleon reactions.

remove these proton final-state events are given in Table 6.3, and are explained in more detail in

Section 6.5.3. This cut is not 100% efficient so we created anETotal PDF for hadronic reactions.

The cuts used to select the proton final-state events are listed in Table 6.4, and the PDF is shown in

Figure 6.3.

Minimum χ2 Fit to Total Energy

To ensure our PDFs are reasonable, a fit to the measurement data was performed. The fit function

consists of a linear combination of the PDFs for theπ → µ → e, π → e, and prompt hadronic

processes. For this preliminary analysis it is assumed that theπ → µ → e, pion decays-in-flight,

and and accidental/pile-up processes have identical shapes and would be indistinguishable in a fit

to ETotal alone. I therefore consider only their sum as a fit parameter,Nπµ2+D+A . The remaining

parameters are the normalization of theπ→ e process,Nπe2, and the prompt hadronic pion-nucleon

reaction with the proton final state particle,NHad.
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Table 6.3: Cuts used to remove events with protons in the final-state.

Cut Description
|∆φMWPC2,PH|< 1.8◦ Remove tracks through PH boundaries

(dE/dx)PH < 3 MeV/cm Protons deposit more energy in the PH

The fit returnedχ2/Ndof = 198.95/157= 1.27 with correlation matrix,

ρ =

















Nπµ2+D+A Nπe2 NHad

Nπµ2+D+A 1 0.0119 7.46×10−6

Nπe2 0.0119 1 −6.16×10−5

NHad 7.46×10−6 −6.16×10−5 1

















,

and normalizations,

Nπµ2+D+A = 4.93226×108±170826.0 ,

Nπe2 = 806149.0±1754.49 , and

NHad= 5.61122×10−12±48.2528 .

(6.30)

The fit function is shown in the top panel of Figure 6.4. Since there is no discriminatory power

between the fraction ofπ→µ→ e events, the pion decays-in-flight, and the accidental backgrounds,

we are unable to quote a branching ratio from this fit alone.

Taking the difference between the measurement histogram and the fit function illustrates the

regions in which our PDFs may deviate from the true shape of the distribution.There is no apparent

deviation in the middle panel of Figure 6.4. The bottom panel of Figure 6.4 shows the bin-wise

contribution to theχ2, also demonstrating that a linear combination of our energy PDFs match the

shape of the measured data, with the exception of a few bins in the low-statisticshigh-energy region.
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Table 6.4: Cuts used to select events with protons in the final state.

Cut Description
−3.0< (tfsp− tπ)< 3.0 ns Keep only prompt events

(dE/dx)PH > 13.0 exp(−0.011ETotal) Protons deposit more energy
min(QMWPC1,QMWPC2)> 1000 ADC ch. Require a min. MWPC energy

Table 6.5: General cuts used to suppress backgrounds in the data sample.

Cut Description
−10.0< (tfsp− tπ)< 200.0 ns Must exist within domain of all PDFs

10.0< ETotal < 90.0 MeV Must exist within domain of all PDFs
EVeto

CsI < 2.0 MeV Minimal energy leakage into veto crystals
Nbeamtracks= 1 Require only one beam track

Beam Particle ID =π Requireπ as beam particle
23.7< TOFBeam Part. < 24.4 ns BC to DEG TOF is TOF ofπ
8.5< ETGT,Pred

π < 13.5 MeV Reasonable predictedπ energy
LTGT > 0.0 cm Valid decay track target path length
40◦ < θ < 140◦ Decay track points to calorimeter

ID = γ for extra decay tracks Require additional tracks to be photons
Not Cosmic Ray Decay track isn’t a cosmic ray

Not scattered beam Beam track isn’t a scattered beam particle
“P”pile-up<−1.0 Low probability of pile-up, see (6.39)
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Figure 6.4: A χ2 fit to the ETotal spectrum. The fit function shown in the top panel consists of alinear com-
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function. The bottom panel shows the bin-wise contributionto theχ2.
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6.5.2 Decay Time

The next observable in our likelihood analysis is the time between the pion stop and the detected

outgoing final-state particle,

∆t = tfsp− tπ . (6.31)

For all five processes we will use the theoretical time distributions for the PDFs,

∆tπ→µ→e =















0 for ∆t < 0

1
τµ−τπ

(

e−t/τµ −e−t/τπ
)

for ∆t ≥ 0

,

∆tπ→e =















0 for ∆t < 0

1
τπ e−t/τπ for ∆t ≥ 0

,

∆tDIF =















0 for ∆t < 0

1
τµ e−t/τµ for ∆t ≥ 0

,

∆taccidental = 1
τµ e−t/τµ , and

∆thadronic = δ(t − tTOF
p ) ,

(6.32)

whereτµ = 2197.03 ns andτπ = 26.033 ns [33]. These theoretical PDFs must be smeared using a

Gaussian representing the timing resolution of our detector system. Both theoretical and smeared

functions are shown in Figures 6.6 and 6.7. Since the time signature for the prompt hadronic reaction

process isessentiallyjust a delta function at the flight time of the proton aftertπ we can obtain the

resolution directly. Figure 6.5(b) shows the Gaussian fit to the prompt peakresulting in an offset of

tTOF
p = 0.6216 ns and aσ∆t = 0.3662 ns. It is important to note that this value is a slight overestimate

of our timing resolution since the protons are not monoenergetic and alreadyhave a smeared time



CHAPTER 6: MAXIMUM L IKELIHOOD ESTIMATION OF Rπe2 108

signature even before detector resolution comes into play. Nevertheless,it is a good approximation.
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(a)∆t spectrum.
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(b) Zoomed into the prompt region.

Figure 6.5: (a)The∆t = tfsp− tπ spectrum for all five processes.(b) shows the prompt region in more detail.
A Gaussian fit to the prompt pion-nucleon interaction peak gives an estimate of the resolution of our decay
time observable.
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Figure 6.6: (a)∆t = te− tπ for theπ→ µ→ eprocess,(b) ∆t = te− tπ for the decay-in-flight process, where
tπ = tµ = 0.

To verify that our PDFs properly describe the events in our data set, we performed aχ2 fit

yielding χ2/Ndof = 1.30. The resulting fit function, composed of a linear combination of the PDFs,

is shown in Figure 6.8. The bottom panel shows the difference between thedata value in each bin

and the fit result, normalized to the bin contents, thus demonstrating excellent agreement throughout

the entire 210 ns domain.
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Figure 6.7: (a) ∆t = te− tπ for theπ→ eprocess, and(b) shows the smeared function fit to a distribution of
π→ eevents obtained from cuts.

Minimum χ2 Fit to Decay Time

To ensure a linear combination of the PDFs accurately describe the shape of the measured data

we performed a minimumχ2 fit analogous to the fit performed forETotal. Using 0.25 ns bins and

five degrees of freedom (the normalizations) we obtainedχ2/Ndof = 1089.59/835= 1.30. The

corresponding correlation matrix for the fit parameters is,

ρ =

































Nπµ2 Nπe2 NHad NDIF NAcc

Nπµ2 1 −0.969 0.125 −0.992 0.008

Nπe2 −0.969 1 −0.005 0.977 −0.004

NHad 0.125 −0.005 1 −0.109 −0.033

NDIF −0.992 0.977 −0.109 1 −0.078

NAcc 0.008 −0.004 −0.033 −0.078 1

































,
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and the normalizations are,

Nπµ2 = (4.73±0.017)×108 ,

Nπe2 = (1.30±141.08)×104 ,

NHad= (9.31±4.24)×103 ,

NDIF = (3.85±19.74)×106 , and

NAcc = (1.71±0.015)×107 .

(6.33)

With a 97% correlation betweenNπe2 andNπµ2 when fitting this∆t observable alone, it doesn’t make

much sense to quote a value ofRπe2 from this fit.

Figure 6.8 for∆t is analogous to Figure 6.4 forETotal. We demonstrate that there is no specific

region in the observable’s domain that cannot be properly accounted for by a linear combination of

the PDFs described in this section. It can be noted that there are systematic “wiggles” in the mea-

sured data, e.g., at∆t ≃ 115 ns and∆t ≃ 155 ns, the cause of which have not yet been determined.
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Figure 6.8: The top panel shows a fit to the∆t = tfsp− tπ spectrum with the PDFs for the five processes.
The distribution had prompt hardonic reactions removed with cuts. The middle panel shows the bin-wise
difference between the fit curve and the measurement data. The bottom panel shows the bin-wise contribution
to theχ2.
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Systematic Uncertainty in Decay Time PDFs

One major concern about the PEN experiment revolves around our knowledge of “time-zero”, i.e.,

the pion stop time,t = 0 ns, and the absolute calibration of the time scale, i.e., the true value

of the time-gate cutoff,t = T ns. As stated in the experiment proposal, keeping the associated

relative error onRπe2 under 2× 10−4 imposes the requirement that the relative timing offset be

known with a precision of 5 ps. Luckily, we used a single detector to calibrateboth the pion

and positron times, namely the active target, thus eliminating differences among trigger timing

and energy threshold effects. Our decay-time observable,∆t, is formed from the prediction of the

pulse positions in the target waveform and each component is calibrated to avery high precision.

The uncertainties on our predicted pion and muon times are determined by allowing all of the

target waveform fit parameters to vary4 and taking the difference between the fit and predicted

times. For each run we obtained a Guassian distribution centered at zero (when the predictions

are calibrated properly) with some timing spread,σ, describing the random fluctuations in our

measurement process. Figures 6.9 and 6.10 showδ t andσδ t versus run in the later half of 2008. It

should be clear that the standard deviation,σ, of the Gaussian is not indicative of our uncertainty

in the value oftπ or te. Instead, any systematic shift of the mean away from zero would put a bias

on our measurement and should be compensated for in our calibrations. The uncertainty on that

mean value corresponds to our systematic uncertainty in this decay-time observable. Upon fitting a

Gaussian function toδ t = tFit − tPred we find the mean of the Gaussian and the associated error in

that mean,

4 You may recall that the times of each pulse were fixed to the predicted values in the final analysis.
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δ tπ = tFit
π − tPred

π =−0.056±0.029 ps and

δ te = tFit
e − tPred

e =−0.20±0.21 ps.

(6.34)

It follows then, by summing the errors in quadrature that the systematic uncertainty in ∆t (and

therefore our uncertainty in∆t = 0 also known as “time-zero”) is,

δ(∆t)≤
√

(

δ tπ
)2

+
(

δ te
)2

= 0.21 ps, (6.35)

which is far better than the required precision.
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Figure 6.9: The top panel shows the mean value of a Gaussian fit toδ tπ = tFit
π − tPred

π versus run for the
later half of the 2008 dataset. The line fit is used to determine the mean and error on the mean for this set
of runs. The bottom panel shows the sigma of the Gaussian fit demonstrating the random fluctuations (not
bias) on this observable.
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Figure 6.10: The top panel shows the mean value of a Gaussian fit toδ te = tFit
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e versus run for the
later half of the 2008 dataset. The line fit is used to determine the mean and error on the mean for this set
of runs. The bottom panel shows the sigma of the Gaussian fit demonstrating the random fluctuations (not
bias) on this observable.
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6.5.3 Differential Energy Loss

The differential (or specific) energy loss is the amount of energy deposited by a particle per unit

length as the particle traverses a medium. Figure 6.11 shows the correction for incident angle,θ,

dependence and the clear separation of positrons with(dE/dx)PH∼ 1.82 MeV/cm and protons with

(dE/dx)PH ∼ 8.2 MeV/cm in the plastic hodoscope.
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(a) Energy deposited in the plastic hodoscope.
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(b) Energy deposited per unit length in the plastic ho-
doscope.

Figure 6.11: The plastic scintillator hodoscope is useful for discriminating between positrons with dE/dx∼
1.5 MeV/cm and protons with dE/dx∼ 6.5 MeV/cm.

As this observable is identical for all positron final-state processes, its utilityis limited to distin-

guishing between proton and positron final-state events. Since we placed cuts (Table 6.3) to remove

events that underwent prompt pion-nucleon reactions, the differentialenergy loss observable may

not be of much help. Nevertheless, some proton final-state events may leak into our data set.

The hodoscope differential energy loss is also used to select protons considering their total

energy deposited. Plotting the differential energy loss versus total energy loss, Figure 6.12, we see

that (dE/dx)PH for protons varies as a function of total energy, but is essentially constant for the

minimum ionizing positrons. We are able to select protons by requiring,

(dE/dx)PH > 13.0 exp(−0.011ETotal) . (6.36)
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Figure 6.12: Proton identification with energy de-
position. The black curve corresponds to (6.36).
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Figure 6.13: Differential energy loss distributions
from simulated positron (green) and proton (purple)
final-state events.

The observable∆φMWPC2,PH is the difference in azimuthal angle,φ, of the track passing through

MWPC2 and the nearest PH stave boundary. Due to the geometry of the staves at the boundary, a

systematic effect occurs in which less light is produced (collected) when the particle traverses the

plastic at the edge. We therefore see a dip in the differential energy loss at each stave boundary

(∆φMWPC2,PH≃ 0) as shown in Figure 6.14. Only events with|∆φMWPC2,PH|> 1.8◦ were considered

in the final analysis.



CHAPTER 6: MAXIMUM L IKELIHOOD ESTIMATION OF Rπe2 117

 (degrees)
MWPC2,PH

φ ∆
-20 -15 -10 -5 0 5 10 15 20

 (
M

eV
/c

m
)

P
H

)x
/d

E
(d

0

2

4

6

8

10

12

E
ve

nt
s 

pe
r 

ce
ll

1

10

210

310

410

(a)Measurement

E
ve

nt
s 

pe
r 

ce
ll

1

10

210

310

410

510

610

 (degrees)
MWPC2,PH

φ ∆
-20 -15 -10 -5 0 5 10 15 20

 (
M

eV
/c

m
)

P
H

)x
/d

E
(d

0

2

4

6

8

10

12

(b) Simulated positron final-state events
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(c) Simulated proton final-state events

Figure 6.14: Differential energy loss versus difference inφ between the track passing through MWPC2 and
the nearest PH stave boundary for,(a) measurement data containing both positron and proton final-state
events, (b) simulated data with positron final-state particles, and(c) simulated data with proton final-state
particles.

6.5.4 Target Waveform Integrals

So far we don’t have an observable with a region occupied exclusivelyby pion decays-in-flight. A

possible observable that may be used in the final analysis is the integral of the “subtracted” target

waveform,

Iw′′ =
T

∑
n= tπ−5ns

w′′[n] , (6.37)

where the sum runs from 5 ns before the pion pulse time to the end of the recorded waveform, T,

typically 180 ns after the positron pulse time (T ≃ te+180 ns). Figure 5.8 shows the filtered target
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waveform,w′′[n], before and after the predicted pion and positron pulses have been subracted.

When the pion decays in flight and the muon is emitted in the forward direction the muon is

boosted forward. Sometimes the muon travels completely through the target, exiting through the

downstream face. Consequently, the muon deposits more energy in the target than we expect and

the predicted pusle is too small. In this case,w′′[n] will contain a residual pulse attπ.

For pion decays-in-flight where the muon is emitted backwards, just the opposite happens. The

muon is boosted backwards and subsequently deposits a smaller amount of energy in the target than

we predict. The subtraction procedure subtracts too much and we’re leftwith a dip in the waveform.

For decays-in-flight with the muon emitted at certain angles with respect to the pion momentum the

energy deposited can resemble aπ→ e decay and thus present a dangerous systematic uncertainty.
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(b) Measurement

Figure 6.15: Subtracted target waveform integral for the five main processes from(a) simulation and(b)
measurement. The five processes are color coded as follows:πµ2 = green,πe2 = blue, hadronic = purple,
decay-in-flight = red, accidental = orange, measurement (with hadronic interactions removed) = black.

Figure 6.15 showsIw′′ for simulation and measurement. Theπe2 process gives a peak centered at

zero, since both pion and positron peaks are properly subtracted and we’re left with a flat waveform.

After the pion and positron pulses are subtracted fromπµ2 events the muon pulse remains thus

giving the peak centered at 4.12 MeV. Accidental coincidences also have a muon in the target, so

this observable appears essentially the same for theπµ2 and accidental coincidence processes. As
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discussed above, the distribution for decays in flight is more spread out. Once the events undergoing

hadronic interactions are removed using cuts, the only events populating theleft shoulder of this

observable are decays in flight.

The distributions for the individual processes in Figure 6.15(b) were obtained using cuts. Both

theπµ2 andπe2 processes exhibit a high energy shoulder resulting from extra beam contamination

(beam halo), or pile-up particles. The accidental coincidence distributionwas determined only using

the porch (te− tπ < 0) region. We don’t have any way to isolate pion decays in flight, so that process

is not plotted in Figure 6.15(b).

The primary goal of this section is to describe a possible observable to be included in the like-

lihood analysis. Considerable difficulty is involved in determining the PDFs foreach process for

this observable, as there is only a minimal set of cuts that won’t distort the shapes. We would

have to rely heavily on simulation (especially for pion decays in flight) and calculate conservative

systematic error estimates.

6.5.5 Pion Decay Vertex

As discussed in the previous section, the daughter muons from pions decaying in flight are boosted

either upstream or downstream. This process results in a smeared stoppingdistribution for the

stopped muons, as opposed to the narrow stopping distribution of the stopped pions.

Figure 6.16 shows the difference between the predictedz coordinate of the pion stop position

and the calculatedz coordinate from the final-state particle track,

∆z= zTrack
0 −zPred

0 . (6.38)
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The prediction for the stopping vertex is based on the particle’s momentum, obtained from time-

of-flight between the forward beam counter and the degrader. The origin of the decay track is

determined to be the intersection between the decay track determined from the MWPCs and the

beam track determined using the wedged active degrader. We clearly seethat the pion decays in

flight have a much broader distribution. It is also worth noting that the distribution for events that

undergo a pion-nucleon interaction is shifted since the interaction may occurbefore the pion comes

to a complete stop. The distribution forπ→ µ→ e events is slightly broader when compared to the

distribution forπ→ e events due to the∼ 2 mm path length of the muon inside the target.
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Figure 6.16: Difference between the z coordinate of the predicted pion stop position and the calculated z from
the final-state particle track. Black = measurement, and thecolored data points correspond to individual
simulated processes, where Green =π → µ → e process, Blue =π → e process, Purple = pion hadronic
interactions, Orange = accidental coincidences, and Red = pion decays-in-flight.

The stopping distribution is correlated with the energy deposited in the target. When the daugh-

ter muon is boosted forward, the recorded energy in the target will be larger and thez of the muon

stop position will be larger. Figure 6.17 shows the target waveform integral versus∆z showing the

correlation. Figures 6.18 and 6.19 show the distributions for each individual simulated process.

In summary,∆zmight be useful to discriminate the pernicious pion decays in flight. As this ob-

servable is correlated with the target waveform integral, we should consider using two-dimensional

PDFs as hown in Figures 6.18 and 6.19.
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(a) Measurement
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(b) Measurement

Figure 6.17: Target waveform integral versus the difference between thez coordinate of the predicted pion
stop position and the calculated z from the final-state particle track.(a)shows the Events per cell on a linear
scale demonstrating the dominant peak due to theπ → µ → e events.(b) shows the Events per cell on a
logarithmic scale so we can see the structure due to the otherprocesses.
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(a) Simulatedπ→ µ→ eevents
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(b) Simulatedπ→ eevents
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(c) Simulated pion-nucleon interaction events
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(d) Simulated accidental coincidence events
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(e) Simulated pion decay-in-flight events

Figure 6.18: A comparison of the five main processes using simulated data.Plotted is the target waveform
integral versus the difference between the z coordinate of the predicted pion stop position and the calculated
z from the final-state particle track.
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(a) Simulatedπ→ µ→ eevents
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(b) Simulatedπ→ eevents

 (mm)Pred
0z - Track

0z
-10 0 10

 (
M

eV
)

’’
wI

-15

-10

-5

0

5

10

15

E
ve

nt
s 

pe
r 

ce
ll

1

10

210

(c) Simulated pion-nucleon interaction events
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(d) Simulated accidental coincidence events
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(e) Simulated pion decay-in-flight events

Figure 6.19: Same as Figure 6.18 but with the Events per cell shown on a logarithmic scale.
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6.5.6 Probability of Pile-Up

Using multi-hit TDCs we were able to store many hits in the degrader from pions leading up to the

actual pion hit recorded as the triggered event. The logarithm of the probability of the current event

containing a muon parked in the target from a previous beam particle is given by,

“P”pile-up= ln
[

Ppile-up
]

= ln

[

ℓ

∑
k=1

e−|dtk|/τµ

]

, (6.39)

whereℓ is the number of TDC hits and dtk is the time between the previous hit andtDEG
π of the

triggered event. “P”pile-up ranges from -13.8 for the lowest probability of having a pile-up event to

∼0 for the highest probability of having a muon parked in the target from a previous pion. The

value of -13.8 corresponds to not having any previous hits recorded inthe finite range of the TDC.
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Figure 6.20: Logarithm of the probability of a triggered
event containing a muon parked in the target originat-
ing from a previous beam pion. A more negative value
corresponds to a lower probability of pile-up.

We originally considered using “P”pile-up as an observable in the likelihood analysis, but at

this point we decided against it. For one, the PDFs would be the same for manyof the processes

and therefore it wouldn’t add much discriminatory power to the analysis. Also, we would have to
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properly simulate the previous hits in the TDC in order to maintain our philosophy that our analysis

tools do not know if the data they are analyzing is from measurement or simulation. We’ve decided

to just make cuts, “P”pile-up< −1.0, to remove many pile-up events at the cost of removing some

goodπe2 andπµ2 events.

6.6 Most Likely Estimate of Rπe2

I’ve written a C++ program to determine the most likely values of the parametersθi . The pro-

gram uses the un-binned maximum likelihood technique and analyzes each event individually. The

program is divided into three stages.

Maximum Likelihood: Stage 1

The first stage applies all the cuts to the data that will be used in the final likelihood analysis and

fills histograms for each observable. In the example demonstrated in this dissertation I’ve used only

two observables, namely the decay time,∆t, and the total energy of the final-state particle,ETotal.

The program can be run in parallel, filling histograms for each run. Later the histograms can be

combined to create one histogram for each observable containing every event that will enter the

likelihood analysis.

The goal of the first stage is to determine the range over which we must scaneach parameter

ensuring the range encompasses its most likely value. We find this range by performing a binned

minimum χ2 fit. It is a simultaneous fit to both the decay time and total energy observables with
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shared normalization parameters yielding,

Nπµ2 = (4.7641±0.0018)×108 events,

Nπe2 = (8.0591±0.0175)×105 events,

NHad= 0.00000018±48.2138 events, (6.40)

NDIF = 0.00336783±43558.1520 events, and

NAcc = (1.6803±0.0135)×107 events.

This fit has aχ2/Ndof = 1310.7/995= 1.317. Since we’ve performed a fit determining the normal-

izations of each process, we might as well discuss the results and present a branching ratio from this

method before discussing the next stage in the likelihood analysis.

The correlation matrix from theχ2 fit is

ρ =

































Nπµ2 Nπe2 NHad NDIF NAcc

Nπµ2 1 0.0029 0.0000066 0.00060 −0.72

Nπe2 0.0029 1 0.000031 0.000013 −0.016

NHad 0.0000066 0.000031 1 0.0000000049 0.000011

NDIF 0.00060 0.000013 0.0000000049 1 0.00016

NAcc −0.72 −0.016 0.000011 0.00016 1
































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and the covariance matrix is

V =

































Nπµ2 Nπe2 NHad NDIF NAcc

Nπµ2 3.26×1010 9.31×105 −7.13×10−3 2.62×103 −1.76×1010

Nπe2 9.31×105 3.07×106 3.24×10−4 5.37×10−1 −3.88×106

NHad −7.13×10−3 3.24×10−4 3.52×10−5 7.06×10−10 8.91×10−3

NDIF 2.62×103 5.37×10−1 7.06×10−10 5.90×102 5.44×102

NAcc −1.76×1010 −3.88×106 8.91×10−3 5.44×102 1.81×1010

































.

The branching ratio is therefore5

R(χ2) =
Nπe2

Nπµ2

= [1.6915942±0.0037338(stat.)]×10−3

(

∆R(χ2)/R(χ2) = 0.0022073
)

,

(6.41)

and using the parameterization in (6.15) we have

θ(
χ2)

0 =
Nπe2

Nπµ2 +Nπe2

= [1.6915943±0.0037338(stat.)]×10−3

(

∆θ(
χ2)

0 /θ(
χ2)

0 = 0.0022036

)

,

(6.42)

where we have propagated the uncertainties using

σ2
R =

∣

∣

∣

∣

∂R
∂Nπµ2

∣

∣

∣

∣

2

VNπµ2Nπµ2
+

∣

∣

∣

∣

∂R
∂Nπe2

∣

∣

∣

∣

2

VNπe2Nπe2
+2

∂R
∂Nπµ2

∂R
∂Nπe2

VNπµ2Nπe2

=
N2
πe2

N4
πµ2

VNπµ2Nπµ2
+

1
N2
πµ2

VNπe2Nπe2
+2

−Nπe2

N2
πµ2

1
Nπµ2

VNπµ2Nπe2
(6.43)

5Normally I would truncate the least significant digits. I decided to retain them toillustrate the precision to which our
various analysis methods agree.
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and

σ2
θ0
=

∣

∣

∣

∣

∂θ0

∂Nπµ2

∣

∣

∣

∣

2

VNπµ2Nπµ2
+

∣

∣

∣

∣

∂θ0

∂Nπe2

∣

∣

∣

∣

2

VNπe2Nπe2
+2

∂θ0

∂Nπµ2

∂θ0

∂Nπe2

VNπµ2Nπe2

=
N2
πe2

(

Nπµ2 +Nπe2

)4VNπµ2Nπµ2
+

N2
πµ2

(

Nπµ2 +Nπe2

)4VNπe2Nπe2

+2
−Nπe2

(

Nπµ2 +Nπe2

)2

Nπµ2
(

Nπµ2 +Nπe2

)2VNπµ2Nπe2
. (6.44)

Applying the acceptances6 determined from simulation,Aπ→µ= 0.0271648 andAπ→e= 0.411572,

with ai ≡ 1/Ai , we obtain

R̃(χ2) =
aπe2Nπe2

aπµ2Nπµ2

= [1.1164924±0.0024644(stat.)]×10−4

(

∆R(χ2)/R(χ2) = 0.0022073
)

.

(6.45)

Using the parameterization in (6.15) we have

θ̃(
χ2)

0 =
aπe2Nπe2

(

aπµ2Nπµ2 +aπe2Nπe2

)

= [1.1163678±0.0024639(stat.)]×10−4

(

∆θ(
χ2)

0 /θ(
χ2)

0 = 0.0022071

)

,

(6.46)

6These acceptance values are correct to within a few percent. The acceptance values were multiplied by a random
number close to 1.0, so that we blind ourselves from our actual measured value. Once the collaboration is satisfied with
our analysis we will remove the multiplicative random number thus revealingour final result.
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with the uncertainties propagated according to

σ2
R̃ =

∣

∣

∣

∣

∂R̃
∂Nπµ2

∣

∣

∣

∣

2

VNπµ2Nπµ2
+

∣

∣

∣

∣

∂R̃
∂Nπe2

∣

∣

∣

∣

2

VNπe2Nπe2
+2

∂R̃
∂Nπµ2

∂R̃
∂Nπe2

VNπµ2Nπe2

=

(

aπµ2aπe2Nπe2

)2

(

aπµ2Nπµ2

)4 VNπµ2Nπµ2
+

(

aπµ2aπe2Nπµ2

)2

(

aπµ2Nπµ2

)4 VNπe2Nπe2

+2

(

−aπµ2aπe2Nπe2

)(

aπµ2aπe2Nπµ2

)

(

aπµ2Nπµ2

)4 VNπµ2Nπe2
(6.47)

and

σ2
θ̃0
=

∣

∣

∣

∣

∂θ̃0

∂Nπµ2

∣

∣

∣

∣

2

VNπµ2Nπµ2
+

∣

∣

∣

∣

∂θ̃0

∂Nπe2

∣

∣

∣

∣

2

VNπe2Nπe2
+2

∂θ̃0

∂Nπµ2

∂θ̃0

∂Nπe2

VNπµ2Nπe2

=

(

aπµ2aπe2Nπe2

)2

(

aπµ2Nπµ2 +aπe2Nπe2

)4VNπµ2Nπµ2

+

(

aπµ2aπe2Nπµ2

)2

(

aπµ2Nπµ2 +aπe2Nπe2

)4VNπe2Nπe2

+2

(

−aπµ2aπe2Nπe2

)(

aπµ2aπe2Nπµ2

)

(

aπµ2Nπµ2 +aπe2Nπe2

)4 VNπµ2Nπe2
(6.48)

Stage 1 has now given us an estimate for the normalization (6.40) of each process,N̂i ±σNi . We

set the range for each parameter,θi , to θi ±kσθi , wherek is some constant greater than 1, chosen by

hand for each range.

Maximum Likelihood: Stage 2

The second stage of the maximum likelihood analysis determines the most likely estimates of the

parameters. For each event, the negative logarithm of the likelihood (6.14)is calculated for each

value of the parameters,θi . We note that both the hadronic reaction and the decay-in-flight back-

ground fractions are essentially zero from theχ2 fit. Therefore, to save computing time, we decided
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to only have five steps each forθ1 andθ2, and twenty steps each forθ0 andθ3. That means the

negative log of the likelihood is calculated 20×5×5×20= 1000 times for each event. The value

is added to the appropriate bin of a 4-dimensional histogram7. Stage 2 can also be run in parallel,

producing a 4-dimensional histogram of negative log-likelihoods for each run which can be summed

together.

The most likely estimates for the parameters were found to be

θ̂0 = 0.00168223,

θ̂1 = 5.06168×10−6 ,

θ̂2 = 9.32113×10−6 , and

θ̂3 = 0.0341448,

(6.49)

and correspond to the minimum in the 4-dimensional negative log-likelihood histogram. Alterna-

tively, we can shift the minimum to zero and exponentiate, producing the 4-dimensional likelihood

distribution, in which case the best estimates correspond to the location of the maximum.

Figure 6.21 shows a three dimensional view of the projection of the likelihood onto theθ0,θ3

plane. The projections onto all possible two-dimensional combinations ofθi ,θ j of the negative log-

likelihood are shown in Figure 6.22, and of the likelihood are shown in Figure6.23. The projections

onto the one-dimensionalθi are shown in Figure 6.24. The uncertainties cannot be read from these

projections. Instead one must calculate the covariance matrix including the weights for each event.

7The code is written such that it is trivial to extend to anN-dimensional histogram when considering more parameters,
θ0...θN.
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Figure 6.21: The top panel shows the negative logarithm of the likelihoodprojected onto theθ0, θ3 plane.
The bottom panel shows the likelihood itself, projected into the same plane.
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Figure 6.22: These six panels show all possible 2-dimensional projections of the 4-dimensional negative
log-likelihood result.
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Figure 6.23: These six panels show all possible 2-dimensional projections of the 4-dimensional likelihood
result.
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Figure 6.24: The 4-dimensional likelihood result projected down to one dimension illustrating the most
likely values ofθ0 andθ3. The prompt hadronic reactions have been removed with cuts,so it’s no surprise
the entire likelihood falls in the bin containing zero forθ1. At the moment, a PDF with clear discrimination
for the decay-in-flight process has not yet been worked out, so θ2 is ill-determined.
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Maximum Likelihood: Stage 3

The covariance matrix, (6.7), is formed from the matrices (6.16)–(6.18). The elements of these

matrices are the summation of event-by-event calculations involving the best estimates,θ̂i , from

Stage 2. The resulting covariance matrix is

V =

























θ0 θ1 θ2 θ3

θ0 9.79×10−12 4.46×10−14 −4.86×10−11 9.67×10−13

θ1 4.46×10−14 6.27×10−14 −3.55×10−12 −3.40×10−13

θ2 −4.86×10−11 −3.55×10−12 5.83×10−7 −9.53×10−8

θ3 9.67×10−13 −3.40×10−13 −9.53×10−8 8.83×10−8

























.

Figure 6.25 shows the decrease inσθ0 =
√

V00 as the number of analyzed events increases.
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Figure 6.25: The top panel shows the cumulative number of recorded events(unweighted) that enter the final
analysis. The bottom panel shows how the statistical uncertainty in the branching ratio,σθ0, decreases as
the number of events increases.

Maximum Likelihood Results

Once all three stages of the likelihood analysis are complete we can quote the most likely value of

the positronic pion decay branching ratio with its estimated uncertainty,

θ(ML)
0 = θ̂0±

√

V00 = [1.6822255±0.0031295(stat.)]×10−3

(

∆θ(ML)
0 /θ(ML)

0 = 0.0018603
)

.

(6.50)

Now we wish to apply the acceptances from simulation, such that

θ̃(ML)
0 =

aπe2Nπe2
(

aπµ2Nπµ2 +aπe2Nπe2

) , (6.51)
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but we note thatθ0 implicitly contains the values ofNπe2 andNπµ2. We must re-writẽθ0 in terms of

θ0. Since

Nπe2

Nπµ2

=
θ0

1−θ0
and

aπe2Nπe2

aπµ2Nπµ2

=
θ̃0

1− θ̃0
(6.52)

we can write

θ̃0

1− θ̃0
=

aπe2

aπµ2

θ0

1−θ0
(6.53)

thus obtaining

θ̃0 =
aπe2θ0

(

aπe2−aπµ2

)

θ0+aπµ2

. (6.54)

To estimate the uncertainty, we use the following

σ2
θ̃0
=

∣

∣

∣

∣

∂θ̃0

∂θ0

∣

∣

∣

∣

2

σ2
θ0
=

∣

∣

∣

∣

∂θ̃0

∂θ0

∣

∣

∣

∣

2

V00

=

∣

∣

∣

∣

∣

aπe2aπµ2
[(

aπe2−aπµ2

)

θ0+aπµ2

]2

∣

∣

∣

∣

∣

2

V00 . (6.55)

The positronic pion decay branching ratio obtained with the likelihood analysisis

θ̃(ML)
0 = [1.1120560±0.0020650(stat.)]×10−4

(

∆θ(ML)
0 /θ(ML)

0 = 0.0018569
)

.

(6.56)



The idea is to try to give all the
information to help others to judge
the value of your contribution; not
just the information that leads to
judgment in one particular direction
or another.

Richard P. Feynman

Chapter 7

Rπe2 and Conclusions

This chapter summarizes the current results of an on-going effort to extract the positronic pion

decay branching ratio from the PEN experiment data. To date, only the experiment as implemented

in 2008 has been realized in aGEANT4 Monte Carlo simulation [6]. Therefore I have restricted my

analysis to the corresponding set of measurement data.

A minimumχ2 fit resulted in aχ2/Ndof= 1.3, illustrating good agreement between our measured

data and the probability distribution functions used to represent the processes under consideration.

The intentionally blinded branching ratio determined from theχ2 fit is

θ̃(
χ2)

0 = [1.116±0.002(stat.)]×10−4

(

∆θ(
χ2)

0 /θ(
χ2)

0 = 0.0022

)

.

(7.1)

An un-binned maximum likelihood analysis code was developed and properlytakes into account

the weights of our events when estimating the uncertainty. The maximum likelihood estimate of the
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(blinded) positronic pion decay branching ratio is

θ̃(ML)
0 = [1.112±0.002(stat.)]×10−4

(

∆θ(ML)
0 /θ(ML)

0 = 0.0019
)

.

(7.2)

A summary of the results1 from the two methods is given in Table 7.1. The un-binned maximum

likelihood technique resulted in a 0.19% relative uncertainty (statistical) which isan improvement

over the 0.22% relative uncertainty from the binned minimumχ2 method. The statistical uncertainty

from either method is already smaller than the combined (statistical and systematic)uncertainty in

the current experimental world average [33]. The inclusion of the 2009and 2010 data sets in the

near future will significantly reduce the statistical uncertainty of our measurement. The precision

of our measurement, therefore, already meets its design specifications.

The accuracy ofRπe2, however, remains to be determined. Any systematic uncertainty in the

∆t observable was shown to be negligible (Section 6.5.2), but we have yet to quantify the entire

systematic uncertainty in the shape of our PDFs for the total energy. Our uncertainty in the shape of

the low-energy tail for theETotal PDF for theπ→ e process currently yields a 0.33% relative uncer-

tainty onRπe2, which will be reduced with a larger set of simulated data and studies of the measured

distributions which are currently underway. Any systematic uncertainties due to the shapes of the

ETotal PDFs for the other four processes have not yet been quantified. In addition, both theχ2 and

maximum likelihood methods currently estimate a negligible fraction of pions decaying in flight,

even though we have made no cuts to specifically remove these events. The inclusion of additional

observables, such as target waveform integrals and the pion decay vertex, should further constrain

1The central values quoted in this dissertation are still intentionally blinded (multiplied by an unknown random num-
ber) but are accurate to within a few percent of our measurement.
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Table 7.1: Summary of the positronic pion decay branching ratios from various analysis methods. Normally
the least significant digits would be dropped, but they have been retained to illustrate the level at which the
various methods disagree. The central values are still blinded (multiplied by an unknown factor) but are
accurate to within a few percent of our measurement.

Ratio Value Relative Uncertainty

RPDG
πe2

[1.230±0.004(comb.)]×10−4 0.0033

R(χ2) [1.6915943±0.0037338(stat.)]×10−3 0.0022073

R̃(χ2) [1.1164924±0.0024644(stat.)]×10−4 0.0022073

θ(
χ2)

0 [1.6887376±0.0037213(stat.)]×10−3 0.0022036

θ̃(
χ2)

0 [1.1163678±0.0024639(stat.)]×10−4 0.0022071

θ(ML)
0 [1.6822255±0.0031295(stat.)]×10−3 0.0018603

θ̃(ML)
0 [1.1120560±0.0020650(stat.)]×10−4 0.0018569

the estimation of this pernicious background process.
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Appendix A

Trigger Diagrams

This appendix contains the schematic diagrams for the trigger logic as it was implemented for the

PEN experiment in 2010. We implemented several upgrades in 2009 and 2010, including a shift

from the software-based FPGA coincidence triggers to using logical ANDand OR circuits with

NIM hardware. We shaped the target pulse to produce a faster rise time and significantly reduce the

tail. This hardware-based shaping of the pulse allowed us to tag muon pulses following the pion

pulse in the target. The tagged muon logic signal then allowed us to implement a “muon veto” for

a dedicatedπ→ e low-energy tail trigger. Another improvement is the implementation of a strobe

signal in order to force all triggers to have the same trigger timing, thus eliminatingthe possibility

of an associated systematic uncertainty.
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Appendix B

Data Analysis Flowchart

Data Collection: This block consists of the actual experiment as described in Chapter 3. The PEN

experiment had severalfrontendcomputers connected to electronic data acquisition systems. Each

frontend sent its recorded data for each event to abackendcomputer which in turn combined the

event data and wrote data files in zipped MIDAS format (.mid.gz) [1]. Each data file contains

2×105 events (in year 2008) and corresponds to arun of roughly 30 minutes of data collection. In

2008 we collected approximately 2.4 TB of.mid.gz files in 1233 runs.

Data Generation: A GEANT4 simulation was written to produce data in exactly the same for-

mat as our measured data. This Monte Carlo simulation is described in great detail by L. P. Alonzi [6].

Calibration/Stabilization: This block is thoroughly discussed in Chapter 4.

Data Replay: Our data is “replayed” in a modular C++ program called theanalyzer. It is in

this stage where timing coincidences, energy depositions, and geometrical data points are calculated

to reconstruct the beam tracks and decay tracks of the particles observed in each event. An attempt

is made to identify particle type (π+, e+, p+, etc.). Additionally, fits are performed to each target

waveform to identify the decay mode (π → e or π → µ → e) as discussed in Chapter 5. The
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analyzer program can be executed in parallel on multiple processors. We typically submit an

analyzer job for each run. Every job produces an output file in the form of a ROOTTree. The total

size of the .root files amounts to 200 GB for year 2008.

Data Reduction: Modern, large-scale experiments usually produce huge amounts of data of

which only a small fraction is useful for a given measurement. Another C++ program called the

bushmaker was written to reduce the amount of unnecessary background in our datafiles. The

program prunes the 200 GB of trees and creates 14 GB of bushes (still inROOT Tree format). The

bushmaker is also run in parallel, with typically one job per data collection run. It is much easier,

and faster, to work with smaller files.

PDF Determination: The findpdf C++ program takes the bushes as input and applies cuts

to the data to isolate the various processes. The shape of the PDF for eachobservable, for each

process, is obtained. This program also applies theoretical descriptionsto the PDFs to compensate

for low-statistics regions.

Maximum Likelihood (Stage 1): Here we fill histograms containing only the events that will

enter the likelihood maximization procedure. This calculation can be performedin parallel. Then

in the Combine Resultsstage the histograms are summed and a fit is performed to the time and

energy observables to obtain and initial guess for the range over which toscan the parameters of

interest in the maximization procedure.

Maximum Likelihood (Stage 2): The parameters of interest are scanned in the ranges obtained

in the previous stage. The most likely values of the parameters of interest are determined.

Maximum Likelihood (Stage 3): The correction to the variance-covariance matrix is applied

and a more accurate estimate of the errors is found.
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Figure B.1: Data analysis flowchart
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Appendix C

χ2 Minimization with Penalty Terms

When parameter constraints are available from elsewhere, such as fromanother detector element or

even a physical constraint, we may use that information in a minimumχ2 analysis. In our case we

have several parameters in our fit that can be predicted with some certaintyusing multiple detectors.

We can modify the objective function, whose value gets minimized in the fit, by adding a

quadratic term for each constrained parameter,

χ2 =
1

Ndof

n

∑
i=1

(

w̃Fit
i − w̃i

σw̃

)2

+

(

EFit
π −EPred

π

σEπ

)2

+

(

EFit
e −EPred

e

σEe

)2

. (C.1)

The additional terms are known as penalty terms, since they increase theχ2 when the fit tries to pull

the parameter away from its prediction.

A modifiedχ2 objective function that could be implemented in PEN target waveform analysis
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is,

χ2 =
1

n−Ndof

n

∑
i=1

(

AFit
i −APred

i

σA

)2

+λ1

(

AFit
π −APred

π

σAπ

)2

(C.2)

+λ2





√

LTGT
e log

(

AFit
e

APred
e

)

σAe





2

.

The first term is the well knownχ2 per degree of freedom, wheren is the number of analyzed

waveform bins. The number ofextradegrees of freedom,Ndof, is equal to 2 for a 2-peak fit, and 3

for a 3-peak fit. Only±20 waveform bins from each peak position are analyzed, and the number

of analyzed bins is kept constant. Therefore, for events in which the pulses overlap, additional bins

are included in the fit so as to fit the same number of bins for every event.σA gives a measure of

the resolution of the digitizer. The second term takes into consideration how well theπ+ amplitude

from the fit,AFit
π+ , agrees with our predictedπ+ amplitude,APred

π+ . The uncertainty in our prediction

is given byσAπ+
, and is roughly 716 keV (see Section 5.2.1). Finally, the last term in the expression

increases theχ2 as the fit positron amplitude gets further from the predicted positron amplitude.The

ratio of the fit amplitude to the predicted amplitude resembles a smeared Vavilov distribution. The

logarithm transforms this distribution into one symmetric about zero improving the convergence

speed in the minimization process. This method is discussed in more detail in Section5.2.1.

We included weightsλ1 andλ2 in the additional terms. Setting the weights too small has the

same effect as if the terms aren’t included. If the weights are too large we are essentially fixing the

parameters to the predicted values. We used a simulated waveform with a muon pulse completely

overlapping with a pion pulse (∆t = 0) to determine the appropriate weight for theχ2 contribution

from the second term. We performed fits for many values of the weight,λ1. We did a similar study
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with overlapping muon and positron pulses to determineλ2. We chose the weight values at the

intersection point of the contribution from the first term and the additional terms so that we had an

approximately equal contribution to theχ2 from each term, as shown in Figure C.1 (λ1 = 0.9,λ2 =

0.048). There was no theoretical basis for that particular choice of weights, and we found out much

later using the full Monte Carlo simulation [6] that the largest possible weights (essentially fixing

the parameters) gave the best discrimination between pion decay modes.
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Figure C.1: χ2 as a function of the weightsλ1 (a) andλ2 (b). Black is the totalχ2, red is the contribution
to theχ2 from the first term, blue is the contribution from the second term, and green shows the contribution
from the third term.

Nevertheless, to further test the fitting routine before the full Monte Carlo simulation was ready,

we created a simple simulated waveform with a pion pulse attπ = 0 ns and a positron pulse at

te = 25 ns. This two-peak waveform was then fit with both the 2-peak and 3-peak hypotheses. For

the 3-peak hypothesis fits, a fit was done for each predicted time of the muonpulse,tPred
µ in the

range−10< tµ < 35 ns with a 1 ns increment. These fits correspond to the bottom two panels of

figure C.2.

Simulated 3-peak waveforms were created withtπ = 0 ns,te = 25 ns, and a muon pulse at 1 ns
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increments between−10< tµ < 35 ns. For these fits, thetPred
µ was set to the actual time of the pulse

in the synthetic waveform. These fits correspond to the top two panels of figure C.2.
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Figure C.2: χ2 from fits to simulated waveforms for various event types demonstrating the variation of the
modifiedχ2 as a function of pulse separation. Plotted here is not the traditional χ2, but ratherχ2−1 such
that a good fit corresponds to zero.

One can display the same information more compactly when using∆χ2 = χ2
3-peak−χ2

2-peakas in

figure C.3.
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Figure C.3: Scatter plots showing the difference between the predicted(left) and fit (right) pion and muon
pulse times versus∆χ2, demonstrating the ability of∆χ2 to discriminate between 2-peak (π→ e) and 3-peak
(π→ µ→ e) events even when the pulses overlap.
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Appendix D

Partial Derivatives of the Likelihood

Function

∂L
∂θ0

=−(1−θ1)(1−θ2)(1−θ3)Pπµ2 (~xe)

+(1−θ1)(1−θ2)(1−θ3)Pπe2(~xe) (D.1)

∂L
∂θ1

=−(1−θ0)(1−θ2)(1−θ3)Pπµ2 (~xe)

−θ0(1−θ2)(1−θ3)Pπe2(~xe)

+(1−θ2)(1−θ3)PHad(~xe) (D.2)
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∂L
∂θ2

=−(1−θ0)(1−θ1)(1−θ3)Pπµ2 (~xe)

−θ0(1−θ1)(1−θ3)Pπe2(~xe)

−θ1(1−θ3)PHad(~xe)

+(1−θ3)PDIF (~xe) (D.3)

∂L
∂θ3

=−(1−θ0)(1−θ1)(1−θ2)Pπµ2 (~xe)

−θ0(1−θ1)(1−θ2)Pπe2(~xe)

−θ1(1−θ2)PHad(~xe)

−θ2PDIF (~xe)

+PAcc(~xe) (D.4)

∂2L

∂θ0∂θ0
=

∂2L

∂θ1∂θ1
=

∂2L

∂θ2∂θ2
=

∂2L

∂θ3∂θ3
= 0 (D.5)

∂2L

∂θ0∂θ1
=

∂2L

∂θ1∂θ0
= (1−θ2)(1−θ3)Pπµ2 (~xe)

−(1−θ2)(1−θ3)Pπe2(~xe) (D.6)
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∂2L

∂θ0∂θ2
=

∂2L

∂θ2∂θ0
= (1−θ1)(1−θ3)Pπµ2 (~xe)

−(1−θ1)(1−θ3)Pπe2(~xe) (D.7)

∂2L

∂θ0∂θ3
=

∂2L

∂θ3∂θ0
= (1−θ1)(1−θ2)Pπµ2 (~xe)

−(1−θ1)(1−θ2)Pπe2(~xe) (D.8)

∂2L

∂θ1∂θ2
=

∂2L

∂θ2∂θ1
= (1−θ0)(1−θ3)Pπµ2 (~xe)

+θ0(1−θ3)Pπe2(~xe)

−(1−θ3)PHad(~xe) (D.9)

∂2L

∂θ1∂θ3
=

∂2L

∂θ3∂θ1
= (1−θ0)(1−θ2)Pπµ2 (~xe)

+θ0(1−θ2)Pπe2(~xe)

−(1−θ2)PHad(~xe) (D.10)
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∂2L

∂θ2∂θ3
=

∂2L

∂θ3∂θ2
= (1−θ0)(1−θ1)Pπµ2 (~xe)

+θ0(1−θ1)Pπe2(~xe)

+θ1PHad(~xe)

−PDIF (~xe) (D.11)
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Appendix E

Inclusion of Truncated Time PDF

It is possible to truncate theπ → µtoe sequential-decay time PDF in order to obtain the fraction

of events we would expect to see if we were to measuret → ∞. That means the normalization of

theπ→ µtoe sequential-decay time PDF is 1.0 when takingt → ∞ but< 1.0 in our measured time

window. The likelihood must be properly normalized

L → L/N (E.1)

where,

N =
M

∑
i=1

fi

∫

~x

Pi(~x)d~x . (E.2)
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ReplacingL with L/N in (1) will give usℓN . Differentiating as in (6.4) yeilds

V−1
jk = E

[

∂2
(

−ℓN
)

∂ f j∂ fk

]

= E

[

−
N

∑
e=1

∂
∂ f j

(

∂
∂ fk

ln

(

L

N

))

]

=
N

∑
e=1

Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

f= f̂
−

N

∑
e=1

∫
~x
Pj(~x)d~x

∫
~x
Pk(~x)d~x

[

M
∑

i=1
fi
∫
~x
Pi(~x)d~x

]2

∣

∣

∣

∣

f= f̂
(E.3)

Following the same prescription as in (6.7) we will need,

H jk =
N

∑
e=1

we
Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

f= f̂
−

N

∑
e=1

we

∫
~x
Pj(~x)d~x

∫
~x
Pk(~x)d~x

[

M
∑

i=1
fi
∫
~x
Pi(~x)d~x

]2

∣

∣

∣

∣

f= f̂
(E.4)

H ′
jk =

N

∑
e=1

w2
e

Pj(~xe)Pk(~xe)
[

M
∑

i=1
fiPi(~xe)

]2

∣

∣

∣

∣

f= f̂
−

N

∑
e=1

w2
e

∫
~x
Pj(~x)d~x

∫
~x
Pk(~x)d~x

[

M
∑

i=1
fi
∫
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Pi(~x)d~x

]2

∣

∣

∣

∣

f= f̂
(E.5)

again estimated in the sample mean.
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