

SHI

Titel

Projekt

Autor

Version

Erstellungsdatum

letzte Anderung

Filename

Struck Fastbus Interface
STR340/SFI

Tino Haeupke (email: th@struck.de)

1.0

1.8.95
15.07.96 14:45

$340_MAN.DOC

STR340

STRUCK

January 1996

SHI

CONTENS

1 GENERAL INFORMATION
1.1 Purpose
1.2 Product Assistance

1.3 Note

2 SFI INTRODUCTION
2.1 FASTBUS transactions
2.2 Auxiliary Connector
2.3 Future extension

24 FASTBUS Master Port

3 SFI VME SLAVE ADDRESS MAP

4 SFI VME SLAVE REGISTER
4.1 Sequencer Statusregister (R)
4.2 FASTBUS Statusregister 1 (R)
4.3 FASTBUS Statusregister 2 (R)
4.4 FASTBUS Last Primary Address Storeregister (R)
4.5 Last Sequencer Protocol (Sequencer Keyaddress) register (R)
4.6 Next Sequencer Ram Addressregister (R/W)
4.7 FASTBUS Timeout register (R/W)
4.8 FASTBUS Arbitration Level register (R/W)
4.9 FASTBUS Protocol signal register (R)
4.10 Sequencer Fifo Flagand ECL/NIM Input register (R)
4.11 Out-Signal register (W)
4.11.1 VME Out-Signal register
4.11.2 Sequencer Out-Signal register (writeable from the sequencer !)

412 VME IRQ Sourceand MASK register

4.13VME IRQ Level and Vector register

5 VME INTERRUPTS

10

12

13
13
14
15
15
16
17
18
18
19
20
21
21
22
23

24

25

STR340 STRUCK

January 1996

SHI 4

6 FASTBUS MASTER SEQUENCER 26
6.1 Sequencer Enable (arm) 26
6.2 Sequencer FiFo Key Addresses 27
6.2.1 FASTBUS actions 27
6.2.1.1 Mode register and Limit counter (Sequencer Load) 28
6.2.1.2 DMA Status register and Word Counter (Sequencer Store) 28
6.2.1.3 FASTBUS command key address assignments 29
6.2.1.4 FASTBUS cycle command list examples 30
6.2.2 Sequencer Control actions 31
6.3 Sequencer RAM 32
6.3.1 Sequencer RAM Loading 32
6.3.2 Sequencer RAM List execution 32
6.4 Sequencer Programming Examples 33
6.4.1 FASTBUS initialization routine 33
6.4.2 Single FWC routine 33
6.4.3 Single FRD routine 34
6.4.4 Single FRDB routine 35
6.4.5 Load Next EVENT and FRDB L.ist execution example 36
6.4.6 Load a Command List in the Sequencer Ram example 37
6.4.7 Event Readout example using a Ram List 38
7 AUXILIARY CONNECTOR INTERFACE 40
7.1 Auxiliary Connector schematic 40
7.2 User Trigger interface 41
7.3 FASTBUS blocktransfer Direct Modeinterface 43
8 FRONT PANEL 44
8.1LEDs 44
8.2 Inputs/Outputs 45
8.2.1 Schematic differential ECL In/Output 46
8.2.2 Schematic NIM In/Output 47
9 POWER REQUIREMENTS FOR THE SFI 48
10 JUMPER 49

STR340 STRUCK January 1996

SFI 5

1 GENERAL INFORMATION

1.1 PURPOSE

The SFI (STRUCK FASTBUS Interface) is a FASTBUS Master based on a standard
VMEbus CPU. That allows the user to choose a wellknown CPU and operating system
and to drive FASTBUS with that.

1.2 PRODUCT ASSISTANCE

We

afford assistance to SFI users to allow for a short implementation time for user

specifier application by the following means:

*

Example code for OS9 (K&R style C) is supplied with SFI
Address questions relating SFI hard- and software to SFl @struck.de
Send an email containing your SFI’s serial number and the used VMEbus CPU and

operating system to SFI@struck.de . We would like to use your email address for
information exchange with other users (only with your permission).

1.3 NoTE

*

The cover sheet is hard anodized so that the surface is insulating. Additional, the
inside VME area has been provided with a plastic foil in addition. Please, slide in
(or out) carefully the left VME module to protect the foil.

VME BUS Daisy chain

If no VMEbus module is installed in the second VMEDbus Slot (right VMEDbus slot
side) of the SFI2, so you have to place a ,dummy* Daisy Chain VMEBus
connector on the P1 connector (upper one).

Auxiliary Connector
The Auxiliary connector is used on the SFI. Make sure that no incompatible
auxiliary board is plugged in.

STR340

STRUCK January 1996

SFI 6

2 SFI INTRODUCTION

The SFI is a powerful and simple Fastbus Master and Readout Controller using commer cial off-the-
shelf 6U VME CPU (or Master) module as local intelligence. Using already established real time
operating systems on these modules (like OS-9, VxWorks, LynxOS or even MS-Windows Derivates),
programming of FASTBUS applications is simplified and allow direct code portation.

Oneor two (more on request) 6U VME modules can be plugged into the SFI FASTBUS module. For
example, you can operate a powerful VME configuration consisting of a CPU (68040, R3000, Power-
PC or DSP based) together with a communication interface module (like Fibre channel, ATM, VICbus
etc.) locally and directly in a FASTBUS crate.

Another possibility is to operate a single VME processor with an on-board communication interface
based for instance upon PCI local bus mezzanines (available from vendors are PCI-ATM, PCI-Fibre
channel, PCI-SCI etc.).

The interface between the VME-CPU and the FASTBUS Segment guarantees highest possible
performance in speed, flexibility and reliability.

STREA0pect STR340/SFI
Crate Auxiliary T VME Bus
Connector Master/Slave
Interface Interface
* one Slot (SFI1)
VMEbus SFI *two Slots (SFI2)
* P2A/C connector interface Auxiliary
Connector — — VME CPU
FB DMA Direct Readout Interface
* ECL (LeCroy; max. 80MByte) Submodule * user defined processor
* DT32 Source (40 MByte) Extension | *user defined operating system
* Optical Source (20 MByte) Connectors * user defined interface
. (Fiber Channel, SCSI, SCI, ATM ..)
. . = left side: =
Trigger Logic - blocktransfer
* Trigger Inputs _ DMA-Bus
* Trigger Ackn. Outputs |) .
* 32-bit Trigger word input r\'/g'\;"Esl‘)'de'
* 32-bit word output] us L
Fastbus - —
Crate In/Outputs
| I\:Iasfter * Nim Reset Input
nteriace * 3 NIM inputs (Trigger)
* 3 NIM outputs
* 4 diff. ECL inputs
* 4 diff. ECL outputs

* 4 TTL outputs with Leds

file: s340_blk.vsd

Blockdiagram: SFI

STR340 STRUCK January 1996

SFI 7

Blockdiagram: Data Flow

STR340 STRUCK January 1996

SFI 8

2.1 FASTBUS TRANSACTIONS

FASTBUS transactions are executed by a high speed hardware sequencer logic. Using a simple
programming model FASTBUS transactions are defined by a list of VME key address cycles. In order
to gain in speed VME key address lists and data are passed through a FIFO to the sequencer. Applying
this technique FASTBUS cycles and instructions can be executed already during the write list phase in
an overlap mode. Synchronisation of list execution with external NIM/ECL signals is implemented too.

FASTBUS blocktransfer read sequences are transformed into VME blocktransfer sequences or single
cycles (if the VME mode is enabled). In this case, the SFI on-board DMA controller passes the
FASTBUS data through a derandomizing FASTBUS-data FIFO directly into the VME-CPU memory
(partitioned in multiple 256 byte blocks in the case of large blocks). In this case, the SFI controller
actsasthe (internal) "VME Master".

Another important feature is the direct mode via the FASTBUS Auxiliary connector. In this mode, the
FASTBUS data, reading in blocktransfer mode, are pushed through Buffer/Latches to the FASTBUS
Auxiliary connector controlled via several protocol lines. A simple logic on an auxiliary module
converts the FASTBUS data into strobed differential ECL outputs (LeCroy ECLine compatible), into
serial optical data stream (STR333/S) or into a private data stream format. Protocol compatibility to
LeCroy ECLine offers to pass the data stream into buffer memories and/or DSP based Input FiFos (e.g.
Struck VME STR8090 or FASTBUS STR370 DSP96002 Systems).

The VME mode and the direct mode can also enabled at the same time. In this case data are pushed
into the VME slave memory (CPU or other VME module) and to the Auxiliary connector interface
(SPY Mode).

A complete FASTBUS crate scan and readout sequence consisting of an arbitrary mixture of FASTBUS

transactions (typically address locks, secondary address writes, multi block reads, single block reads,
local broadcasts etc.) is executed by the list sequencer in one "stream".

2.2 AUXILIARY CONNECTOR
The Auxiliary connector provides the following features:
* connection to the VME P2 A/C connector from the leftside VME modul

* FASTBUS blocktransfer DIRECT Mode
* user Trigger interface (write/read 32-bit word, receive signals, assert signals)

STR340 STRUCK January 1996

SFI 9

2.3 FUTURE EXTENSION

In order to offer even higher flexibility and speed, VMEbus and FASTBUS DMA Bus submodule
extension SMD connectors are implemented. These SMD connectors allow to add different kind of
user defined logic.

For example a local memory buffer with up to 128Mbyte of fast dual ported DRAM, which is able to
accept FASTBUS data streams at a sustained rate of 40Mbyte/s. Using this buffer it is possible to cover
up to three seconds of data taking at highest FB speed for instance during a accelerator beam spill.
Emptying of the buffer, for instance during a spill pause, can be performed by the VME CPU with D64
blocktransfer read cycles, passing the data into communication channels like Fibre Channel, ATM etc.,
or for example a memory look-up table to filter and convert the data, eg..

Blockdiagram: example of alook-up tableto filter and convert data

STR340 STRUCK January 1996

SFI 10

2.4 FASTBUS MASTER PORT

Due to the special attributes and complexity of FASTBUS operations, especially compound cycles like
<address lock, secondary address write, data read, address release> and also complex status responses
on SS-lines, the SFI does not use a direct, synchronous transformation method between VME action(s)
and FASTBUS action(s). In this case route/mapping look up tables and SS-response handling methods
would cause many complications.

Instead, the SFI implements a transformation method between VME and FASTBUS actions using so
called Key Address Technique.

Key Address Technique means that certain VME address keys are used to execute ("to open™) certain
types of FASTBUS transactions. The actual transaction is defined in detail by accompanying data (for
instance the key address operation to establish an address lock has to be accompanied by the
geographical or logical address in the data part of the VME cycle.) VME Key address cycles are even
used to program and define the SFI DMA controller (Setting word/limit counter, address pointer). A set
of successive key address cycles forms a list of SFI/FASTBUS transactions, which is interpreted and
executed by the sequencer logic.

In order to increase the FASTBUS system performance the VME key address cycles and the FASTBUS
list interpreter are not directly coupled (or synchronized). Instead, the key address information together
with its data information are written into a decoupling FIFO (or RAM, see below) at highest VME
speed. As soon as the first words have rippled through the FIFO, the list sequencer starts the
corresponding FASTBUS or internal actions in an overlapping mode.

Another advantage of this technique is, that error conditions (Time out, or SS-response >0) are not
handled by special CPU Bus Errors or Traps, instead the FASTBUS Master sequencer handles the
exceptions (also Sl support) and informs the VME CPU by polling a register or an VME Interrupt.
FASTBUS and Sequencer status registers can be read to achieve the required status information.

Data, which are read from FASTBUS in single cycle mode (not with the autonomous blocktransfer), are
passed directly into the sequencer Data Output FIFO (SEQ2VME Fifo).

With the sequencer FIFO key addresses it is also possible to execute the following special functions:

« start autonomous blocktransfer (High speed FB blocktransfer, DK(t) to DS(t) =35ns to 45 ns)

¢ load DMA limitcounter (=max. blocklength)

¢ load DMA address pointer (VME Slave address; A32)

e store DMA wordcounter, Timeout information and SS-response in the Data Output Fifo
(SEQ2VME Fifo)

e store only DMA wordcounter

e generate VME interrupt

o set/clear external signals (NIM, ECL)

e set/clear Leds

Sequencer RAM

In parallel to the FIFO a Sequencer List RAM is implemented in order to store a complete list and to
start the execution of the entire list without rewriting the list elements into the FIFO. This feature
allows for instance to initialize a compound FB crate readout sequence of multiple TDC’s and ADC’s
with one single VME cycle.

STR340 STRUCK January 1996

SHI

11

ECL/TTL
Protocol
Buffer

i

1

10

ECL/
TTL
Data

Buffer

/\;

FASTBUS
Master
Sequencer

Logic

—

FASTBUS
blocktransfer
Data In/Output

Sequencer
Sequencer Key Address Protocol Address
j j FiFo
Sequencer
Protocol
RAM VM E
RAM Address SI ave
Sequencer A24/D32
Data Input
RAM
Interface
‘ Sequencer
Sequencer Data Data Input Data
FiFo N Y]
n| Sequencer |
Data Output |
FiFo
FB DMA control VM E
FB DMA address bus (32 bit) M aSter
jt FB DMA control A32/D32
D32-

FB DMA data bus (32 bit)

datei: S340_FBM.vsd

blocktransfer
> D64 (option)

Interface

Blockdiagram:

FASTBUS Master Sequencer

STR340

STRUCK

January 1996

SFI 12

3 SFI VME SLAVE ADDRESS MAP

The SFI VME Slave logic can be addressed with the VME Address Modifier AM=39 and AM=3D
(A24/D32).

The VME Base Address (b) is to choose with the 4-bit switch SW850.

Factory setting: SW850 = E ==> $E00000.

For processor data cache and Compiler optimizer problems it is helpful to use different addresses
(different x) for read and write cycles !

A24 address| R/W |function
(A24/D32) (x = don’t care)
$b0 1x 00 R Internal FASTBUS I/O Bus
$b0 1x 04 R FASTBUS Last Primary Address Storeregister
$ b0 1x 00 W Write VME Out-Signal register (LEDs, ECL, NIM, AUX)
$b0 1x 04 wW Key Address: clear VME Out-Signal register
$ b0 1x 10 w Writeto internal AUX-port register
$b0 1x 14 wW Key Address. generate AUX_B40 pulse
$ b0 2x 00 R FASTBUS Timeout register
$b0 2x 04 R FASTBUS Arbitration Level register
$ b0 2x 08 R FASTBUS Protocol Signal register
$b0 2x 0C R Sequencer Fifo Flag and ECL/NIM Input register
$b02x 10 R VME IRQ Level and Vector register
$b02x 14 R VME IRQ Source and Mask register
$b0 2x 18 R Next Sequencer Ram Addressregister
$b02x 1C R Last Sequencer Protocol (Sequencer Keyaddress) register
$ b0 2x 20 R Sequencer Statusregister
$b0 2x 24 R FASTBUS Statusregister 1 (Arbitration/Primary Status)
$b0 2x 28 R FASTBUS Statusregister 2 (Data cycle/lDMA Status)
$ b0 2x 00 wW FASTBUS Timeout register
$b0 2x 04 wW FASTBUS Arbitration L evel register
$b0 2x 08 wW reserved
$b02x0C |W reserved
$b02x 10 w VME IRQ Level and Vector register
$b02x 14 W VME IRQ Mask register
$b0 2x 18 w Next Sequencer RAM Addressregister
$b02x1C |W Key Address: Reset register group LCA2 (xx 20 xx)
$ b0 2x 20 w Key Address: Sequencer Enable
$b02x 24 w Key Address: Sequencer Disable
$b0 2x 28 w Key Address. Sequencer Ram Load Enable
$b02x2C |W Key Address: Sequencer Ram L oad Disable
$ b0 2x 30 w Key Address: Sequencer Reset
$ b0 2x 38 W Key Address: Clear Sequencer CMD Flag
$ b0 4x xx R Read SEQ2VME Fifo
$ bl xx xx wW Write VM E2SEQ Fifo
STR340 STRUCK January 1996

SFI 13

4 SFI VME SLAVE REGISTER

4.1 SEQUENCER STATUS REGISTER (R)

This register is a read only register for the Sequencer Status information.

bit | name function

31 |reserved “1e

16 |reserved “1

15 | SEQ DONE indicates that the Sequencer is in idle Loop or Sequencer is disabled

14 | SEQ BUSY indicates that the Sequencer is BUSY (valid only if SEQ_ENABLE)

13 |SEQ IDLE indicates that the Sequencer is IDLE (Enabled but no new Command)

12 |reserved “0*

11 |CMD CTR indicates that the Sequencer works on a Control command

10 |CMD_PRIM indicates that the Sequencer works on a Arbitration or Primary Address

command

9 |CMD DATA indicates that the Sequencer works on a FB Data Cycle

8 |CMD DMA indicates that the Sequencer works on a FB DMA Blocktransfer

7 |SEQ DMA ERROR |indicates an error during FB DMA Blocktransfer Cycle

6 |SEQ DATA ERROR |indicates an error during FB Data Cycle

5 |SEQ PRIM _ERROR |indicates an error during Arbitration or Primary Address Cycle

4 |SEQ CMD_ERROR |indicates an invalid Sequencer Command (undefined Sequencer Key address)
3 |SEQ WAIT Sequencer waits for an external or internal event (reserved)

2 |SEQ RAM LOAD Sequencer is in the Sequencer RAM Load Mode

1 |SEQ RAM ENABLE | Sequencer is enabled and in Sequencer Ram Mode

0 |SEQ ENABLE Sequencer is enabled (Fifo or RAM Mode)

Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2" : OxFFFF0000

STR340 STRUCK January 1996

SFI 14

4.2 FASTBUS STATUS REGISTER 1 (R)

This register is a read only register. In case of a Sequencer Primary Address cycle error (bit
SEQ PRIM_ERROR in the Sequencer Status register is set), this register gives more detailed
information about the reason.

bit | name function
31 reserved “1
16 reserved “1
15 reserved “1
14 reserved “1e
13 reserved “1
12 reserved “1e
11 reserved “0*

10 | PRIM_AK_TIMEOUT2 | Primary Address Cycle (AK) Timeout and WT is actice
--> S| (Segment Interconnect) Farside Timeout

9 PRIM_AK TIMEOUT1 | normal Primary Address cycle (AK) Timeout
8 reserved “0*
7 PRIM _SS STOP indicates that the last Primary Address cycle stops with SS-response <> 0
6 PRIM _SS2 SS2 bit of last Primary Address cycle
5 PRIM SS1 SS1 bit of last Primary Address cycle
4 PRIM_SSO SS0 bit of last Primary Address cycle
3 PRIM _ERROR3 set AS Timeout; not possible to set AS (WT)
2 PRIM _ERROR2 pending Master but other Master still active (Longtime Timeout)
1 ARB ERROR1 Avrbitration Timeout
0 PRIM_ERROR1 try to set AS but already ASAK Lock is set
Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2" : OxFFFFF000

STR340 STRUCK January 1996

SFI 15

4.3 FASTBUS STATUS REGISTER 2 (R)

This register is a read only register. In case of a Sequencer Data or DMA(blocktransfer) cycle error (bit
SEQ DATA ERROR or bit SEQ_DMA_ERROR in the Sequencer Status register is set), this register
gives more detailed information about the reason.

bit | name function

31 | reserved “1

16 | reserved “1

15 | DMA DONE indicates that the DMA is finished

14 | DMA BUSY indicates that the DMA is BUSY

13 | DMA_VME_TIMEOUT | indicates a VME TIMEOUT during last DMA

12 | DMA_FB_TIMEOUT indicates a FASTBUS Timeout during last DMA
11 | DMA LIMIT indicates that the last DMA stops by Limit Counter
10 | DMA SS2 shows the SS2 bit from last DMA

9 | DMA Ss1 shows the SS1 bit from last DMA

8 | DMA SS0O shows the SSO bit from last DMA

7 | DATA SS STOP indicates that the last Data Cycle stops with SS-response <> 0
6 | DATA SS2 SS2 bit of last Data Cycle

5 | DATA SS1 SS1 bit of last Data Cycle

4 | DATA SSO SS0 bit of last Data Cycle

3 | DATA ERROR4 DK Timeout

2 | DATA ERROR3 set DS Timeout (not possible to set DS, WT)

1 | DATA ERROR2 DK is set !

0 | DATA ERROR1 no ASAK Lock

Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2* :

OxFFFFO000

4.4 FASTBUS LAST PRIMARY ADDRESS STORE REGISTER (R)

This register is a 32-bit read only register and it is updated with the Fastbus AD lines (primary address)
by each Primary Address cycle of the SFI. This register is helpfull for error debuging by executing a
FASTBUS command list to find out in an error case with which FASTBUS slave the error occured.

Value after Power-up Reset or Reset :

0x00000000

STR340

STRUCK January 1996

SFI 16

4.5 LAST SEQUENCER PROTOCOL (SEQUENCER KEYADDRESS) REGISTER (R)

This register is a read only register and it is updated with sequencer protocol command by each reading
of the next sequencer protocol command from the VME2SEQ sequencer protocol Fifo. In case of a
sequencer command error (bit SEQ_CMD_ERROR in the Sequencer Status register is set), this register
stores the last protocol command.

bit | name function
31 | reserved “1
16 | reserved “1
15 | L SEQ Al5 last sequencer key address bit A15
14 | L SEQ Al4 last sequencer key address bit A14
13 | L SEQ Al3 last sequencer key address bit A13
12 | L SEQ Al2 last sequencer key address bit A12
11 | L SEQ All last sequencer key address bit A1l
10 | L SEQ Al0 last sequencer key address bit A10
9 | L SEQ A9 last sequencer key address bit A9
8 | L SEQ A8 last sequencer key address bit A8
7 | L SEQ A7 last sequencer key address bit A7
6 | L SEQ A6 last sequencer key address bit A6
5 | L SEQ A5 last sequencer key address bit A5
4 | L SEQ A4 last sequencer key address bit A4
3 | L SEQ A3 last sequencer key address bit A3
2 | L SEQ A2 last sequencer key address bit A2
1 | reserved “1e
0 | reserved “1

Value after Power-up Reset or Reset : OxFFFF0003

STR340 STRUCK January 1996

SFI 17

4.6 NEXT SEQUENCER RAM ADDRESS REGISTER (R/W)

This register stores the Sequencer Ram address pointer. It is used either for loading a command list or
for executing a command list.

In case of loading a command list this register will be loaded with the ram address via the VME CPU.
Then the CPU has to enable the ram load mode. Now the CPU can write the command list into the
VME2SEQ Fifo. The sequencer ram load logic reads the Fifo (if not empty) and writes the reading data
(protocol and data) into the sequencer ram and increments the address pointer automatically. After the
CPU has written the full command list into the Fifo (indirect to the sequencer ram) it is possible to read
the address pointer to check or to store the end address.

In case of executing a command list this register will be loaded with the start ram address via the
sequencer. The sequencer can only load addresses on a 0x100 boundary (0x0, 0x100, 0x200,). The
sequencer increments also the address pointer automatically. After executing the command list it is
possible to read the address pointer via the CPU to check the end address or in an error case it is
possible to find out on which command the error occured.

It is only possible to load this register (write to this register) from the VME CPU with a new sequencer
ram address pointer if the sequencer isnot enabled and if the sequencer is not in the sequencer ram
load mode.

It is only allowed to read the address pointer if the sequencer is not in ram load mode or if the
sequencer is not in the ram mode.

bit | name R/W function

31 | reserved read only | “1“

16 | reserved read only “1

15 | SEQ RAM A15 | read/write | no function

14 | SEQ RAM Al4 | read/write | sequencer ram address bit A14

13 | SEQ RAM A13 | read/write | sequencer ram address bit A13

12 | SEQ RAM Al12 | read/write | sequencer ram address bit A12

11 | SEQ RAM All | read/write | sequencer ram address bit A1l

10 | SEQ RAM A10 | read/write | sequencer ram address bit A10

9 | SEQ RAM A9 read/write | sequencer ram address bit A9

8 | SEQ RAM A8 read/write | sequencer ram address bit A8

7 | SEQ RAM A7 read/write | sequencer ram address bit A7 (loaded from the seq. always with “0%)
6 | SEQ RAM A6 read/write | sequencer ram address bit A6 (loaded from the seq. always with “0%)
5 | SEQ RAM A5 read/write | sequencer ram address bit A5 (loaded from the seq. always with “0%)
4 | SEQ RAM A4 read/write | sequencer ram address bit A4 (loaded from the seq. always with “0“)
3 | SEQ RAM A3 read/write | sequencer ram address bit A3 (loaded from the seq. always with “0%)
2 | SEQ RAM A2 read/write | sequencer ram address bit A2 (loaded from the seq. always with “0“)
1 | SEQ RAM Al read/write | sequencer ram address bit Al (loaded from the seq. always with “0%)
0 | SEQ RAM A0 read/write | sequencer ram address bit A0 (loaded from the seq. always with “0“)

Value after Power-up Reset or Reset : OxFFFF0000

Sequencer ram size: 32K x 48 bit

STR340 STRUCK January 1996

SFI 18

4.7 FASTBUS TIMEOUT REGISTER (R/W)

The Short Timeout is enabled during each primary address and data cycles on FASTBUS if WT is not
active.

The Long Timeout is only enabled during FASTBUS arbitration and if WT (wait on FASTBUS) is set
during primary address and data cycles.

bit | name R/W function
31 | reserved read only 1
8 | reserved read only 1
7 | TIME LONG DIS read/write Disable Long Timeout
6 | TIME_LONG_ 2 read/write Long Timeout Bit 2
5 | TIME LONG 1 read/write Long Timeout Bit 1
4 | TIME LONG 0 read/write Long Timeout Bit 0
3 | TIME SHORT DIS | read/write Disable Short Timeout
2 | TIME SHORT 2 read/write Short Timeout Bit 2 (not used ; reserved)
1 | TIME SHORT 1 read/write Short Timeout Bit 1
0 | TIME SHORT 0 read/write Short Timeout Bit 0
Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2" : OxFFFFFFOO
TIME x2 | TIME x1 | TIME x0 Short Timeout Long Timeout
0 0 0 1.6 us 51.2 us
0 0 1 3.2 us 205 us
0 1 0 6.4 us 1.6 ms
0 1 1 12.8 us 12.8 ms
1 0 0 102 ms
1 0 1 8182 ms
1 1 0 6.4 sec
1 1 1 24.8 sec

(valid for 40 MHZ Source Clock, 32 MHZ are used ')

4.8 FASTBUS ARBITRATION LEVEL REGISTER (R/W)

bit | name R/W function
31 | reserved read only 1
8 | reserved read only 1
7 | ABIT read/write Assured Access (FAIR)
6 reserved read/write reserved
5 AL5 read/write FASTBUS Arbitration Level Bit 5
4 AL4 read/write FASTBUS Arbitration Level Bit 4
3 AL3 read/write FASTBUS Arbitration Level Bit 3
2 | AL2 read/write FASTBUS Arbitration Level Bit 2 (set after reset)
1 AL1 read/write FASTBUS Arbitration Level Bit 1
0 ALO read/write FASTBUS Arbitration Level Bit 0
Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2" : OXFFFFFFO4

STR340 STRUCK January 1996

SFI 19

4.9 FASTBUS PROTOCOL SIGNAL REGISTER (R)

This register is a read only register and gives status information about some FASTBUS signals.

bit | name function

31 | reserved “1e

16 | reserved “1e

15 | FB_RB shows the actual status of FASTBUS signal Reset Bus (RB)

14 | FB BH shows the actual status of FASTBUS signal Bus Halt (BH)

13 | FB SR shows the actual status of FASTBUS signal Service Request (SR)

12 | ISMINE L shows a actual status of the Arbitation Logic

11 | FB GK shows the actual status of FASTBUS signal Grant Acknowledge (GK)
10 | FB AG shows the actual status of FASTBUS signal Arbitration Grant (AG)

9 | FB Al shows the actual status of FASTBUS signal Arbitration Request Inhibit (Al)
8 | FB_AR shows the actual status of FASTBUS signal Arbitration Request (AR)

7 | FB EG shows the actual status of FASTBUS signal Enable Geographical (EG)
6 | reserved “1e

5 | FB_AK shows the actual status of FASTBUS signal Address Acknowledge (AK)
4 | FB DK shows the actual status of FASTBUS signal Data Acknowledge (DK)

3 | FB_WT shows the actual status of FASTBUS signal Wait (WT)

2 | FB SS2 shows the actual status of FASTBUS signal Slave Status Bit2 (SS2)

1 | FB SS1 shows the actual status of FASTBUS signal Slave Status Bit 1 (SS1)

0 | FB SSO shows the actual status of FASTBUS signal Slave Status Bit 0 (SS0)

STR340 STRUCK January 1996

SFI 20

4.10 SEQUENCER FIFO FLAG AND ECL/NIM INPUT REGISTER (R)

This register is a read only register and gives status informations about the AUX_B42, NIM and ECL
inputs and about the Sequencer Fifo Flags.

bit | name function
31 | reserved ‘1
16 | reserved ‘1

15 | IN_AUX B42 AUXILIARY Connector B42 Input

14 | IN_NIM3 Level Input NIM3

13 | IN_NIM2 Level Input NIM2

12 | IN_NIM1 Level Input NIM1

11 | IN ECL4 Level Input ECL4

10 | IN_ECL3 Level Input ECL3

9 | IN ECL2 Level Input ECL2

8 | IN ECL1 Level Input ECL1

7 | SEQ2VME_FF Sequencer to VME Fifo Full Flag (synchronous)

6 | SEQ2VME_HF Sequencer to VME Fifo Half Full Flag (asynchronous)
5 | SEQ2VME_AE Sequencer to VME Fifo Almost Empty Flag (asynchronous)
4 | SEQ2VME_EF Sequencer to VME Fifo Empty Flag (synchronous)

VME2SEQ FF VME to Sequencer Fifo Full Flag (synchronous)

VME2SEQ HF VME to Sequencer Fifo Half Full Flag (asynchronous)

VME2SEQ AE | VME to Sequencer Fifo Almost Empty Flag (asynchronous)

OiFriNiW

VME2SEQ EF VME to Sequencer Fifo Empty Flag (synchronous)

(default used Fifos IDT72225: 1K Fifo , Almost Empty is valid if words < 128)

STR340 STRUCK January 1996

SHI

21

4.11 OUT-SIGNAL REGISTER (W)

On the SFI are two Out-Signal registers implemented. The first register will be set/cleared by VME
cycles and the second will be set/cleared by the Sequencer. The Output Level of the signals
NIM_OUTX, ECL_Ox and Lx of both register are ored.
Each register is a selective set/clear register. A ,,0“ written into the corresponding bit has no effect. A
,»1* written into the corresponding bit activates the specified function. A ,,1“ written into both of the set

and clear bit is not allowed in the same time (generates toggle function).

4.11.1 VME Out-Signal

register

bit | name write a “1" function

31 | reserved no

30 | CLR_AUX A45 clear Auxiliary Connector Output A45

29 | CLR AUX A28 clear Auxiliary Connector Output A28

28 | CLR AUX A10 clear Auxiliary Connector Output A10

27 | reserved no

26 | CLR NIM OUT 3 clear NIM Output O3

25 | CLR NIM OUT 2 clear NIM Output 02

24 | CLR_NIM OUT 1 clear NIM Output O1

23 | CLR ECL 01 clear diff. ECL Output O1

22 | CLR ECL 02 clear diff. ECL Output O2

21 | CLR ECL 03 clear diff. ECL Output O3

20 | CLR ECL 04 clear diff. ECL Output O4

19 | CLR L4 clear Led L4 and Testpin output T4 (TTL, low active)

18 | CLR L3 clear Led L3 and Testpin output T3 (TTL, low active)

17 | CLR L2 clear Led L2 and Testpin output T2 (TTL, low active)

16 | CLR L1 clear Led L1 and Testpin output T1 (TTL, low active)

15 | reserved no

14 | SET_AUX A45 set Auxiliary Connector Output A45

13 | SET_AUX A28 set Auxiliary Connector Output A28

12 | SET_AUX A10 set Auxiliary Connector Output A10

11 | reserved no

10 | SET_NIM OUT 3 set NIM Output O3

9 | SET_NIM OUT 2 set NIM Output O2

8 | SET_NIM OUT 1 set NIM Output O1

7 | SET ECL 04 set diff. ECL Output O4

6 | SET ECL O3 set diff. ECL Output O3

5 | SET ECL 02 set diff. ECL Output O2

4 | SET ECL 01 set diff. ECL Output O1

3 | SET L4 set Led L4 and Testpin output T4 (TTL, low active)

2 | SET L3 set Led L3 and Testpin output T3 (TTL, low active)

1 | SET L2 set Led L2 and Testpin output T2 (TTL, low active)

0 | SET L1 set Led L1 and Testpin output T1 (TTL, low active)
STR340 STRUCK January 1996

SHI

22

4.11.2 Sequencer Out-Signal register (writeable from the sequencer !)

bit | name write a “1" function

31 | reserved no

30 | reserved no

29 | reserved no

28 | reserved no

27 | reserved no

26 | CLR NIM OUT 3 clear NIM Output O3

25 | CLR NIM OUT 2 clear NIM Output O2

24 | CLR _NIM OUT 1 clear NIM Output O1

23 | CLR ECL 01 clear diff. ECL Output O1

22 | CLR ECL 02 clear diff. ECL Output O2

21 | CLR ECL 03 clear diff. ECL Output O3

20 | CLR ECL 04 clear diff. ECL Output O4

19 | CLR L4 clear Led L4 and Testpin output T4 (TTL, low active)

18 | CLR L3 clear Led L3 and Testpin output T3 (TTL, low active)

17 | CLR L2 clear Led L2 and Testpin output T2 (TTL, low active)

16 | CLR L1 clear Led L1 and Testpin output T1 (TTL, low active)

15 | reserved no

14 | reserved no

13 | reserved no

12 | reserved no

11 | reserved no

10 | SET_NIM OUT 3 set NIM Output O3

9 | SET_NIM OUT 2 set NIM Output O2

8 | SET_NIM OUT 1 set NIM Output O1

7 | SET ECL O1 set diff. ECL Output O1

6 | SET ECL O2 set diff. ECL Output O2

5 | SET ECL O3 set diff. ECL Output O3

4 | SET ECL 04 set diff. ECL Output O4

3 | SET L4 set Led L4 and Testpin output T4 (TTL, low active)

2 | SET L3 set Led L3 and Testpin output T3 (TTL, low active)

1 | SET L2 set Led L2 and Testpin output T2 (TTL, low active)

0 | SET L1 set Led L1 and Testpin output T1 (TTL, low active)
STR340 STRUCK January 1996

SHI

23

4.12 VME IRQ SOURCE AND MASK REGISTER

Eight interrupt sources are implemented. Each of these interrupt sources can be individually
enabled/disabled (cleared) via this J/K register. A J/K register is a selective set/clear register. A “0
written into the corresponding bit has no effect. A “1* written into the corresponding bit activates the
specified function. A “1* written into both of the enable-bit and disable (clear)-bit is not allowed in the
same time (generates a bit toggle function).

bit | read function write a “1* function

31 | “1¢ no

16 | “1¢ no

15 | SEQ DISABLE IRQ FLAG disable Sequencer DISABLE source

14 | SEQ CMD FLAG disable Sequencer CMD Flag source

13 | SR IRQ FLAG disable SR source (FASTBUS Service Request)
12 | AUX B42 IRQ FLAG disable/clear AUX B42 source

11 | ECL1 IRQ FLAG disable/clear ECL1 IRQ source

10 | NIM3 IRQ FLAG disable/clear NIM3 IRQ source

9 | NIM2_IRQ FLAG disable/clear NIM2 IRQ source

8 | NIM1 IRQ FLAG disable/clear NIM1 IRQ source

7 | SEQ DISABLE ENABLE enable Sequencer DISABLE source

6 | SEQ CMD FLAG ENABLE enable Sequencer CMD Flag source

5 | SR ENABLE enable SR source (FASTBUS Service Request)
4 | AUX B42 ENABLED enable AUX B42 source

3 | ECL1 IRQ ENABLED enable ECL1 IRQ source

2 | NIM3 IRQ ENABLED enable NIM3 IRQ source

1 | NIM2 IRQ ENABLED enable NIM2 IRQ source

0 | NIM1 IRQ ENABLED enable NIM1 IRQ source

Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2* :

OxFFFFO000

STR340

STRUCK

January 1996

SFI 24

4.13 VME IRQ LEVEL AND VECTOR REGISTER

This read/write register controls the VME interrupt control logic on the SFI. It is possible to
enable/disable the generation of a VME interrupt if an internal VME_IRQ is set, to determine the VME
IRQ Level (IRQ[7..1]) and to determine the 8-bit Status/ID (Interrupt Vector). The type of the

Interrupter is D0O8(O).

bit | name R/W function
31 | reserved read only | *1*
16 | reserved read only “1
15 | VME_IRQ read only “1*: VME IRQ is set (internal VME IRQ is set and VME IRQ is
enabled)
14 | 1 VME_IRQ read only “1*: internal VME IRQ is set
13 | reserved read only “0
12 | reserved read only “0
11 | VME IRQ ENABLE | read/write | “0“: VME IRQ is disabled ; “1“: VME IRQ is enabled ;
10 | VME IRQ LEV? read/write | determines the VME IRQ Level on VME
9 | VME IRQ LEV1 read/write | determines the VME IRQ Level on VME
8 | VME _IRQ LEVO read/write | determines the VME IRQ Level on VME
7 | Status/ID_bit7 read/write | Status/ID bit 7; placed on D7 during VME IRQ acknowledge cycle
6 | Status/ID_hit6 read/write | Status/ID bit 6; placed on D6 during VME IRQ acknowledge cycle
5 | Status/ID_bit5 read/write | Status/ID bit 5; placed on D5 during VME IRQ acknowledge cycle
4 | Status/ID bit4 read/write | Status/ID bit 4; placed on D4 during VME IRQ acknowledge cycle
3 | Status/ID_bit0 read/write | Status/ID bit 3; placed on D3 during VME IRQ acknowledge cycle
2 | Status/ID_hit0 read/write | Status/ID bit 2; placed on D2 during VME IRQ acknowledge cycle
1 | Status/ID_bit0 read/write | Status/ID bit 1; placed on D1 during VME IRQ acknowledge cycle
0 | Status/ID_bit0 read/write | Status/ID bit 0; placed on DO during VME IRQ acknowledge cycle
Example for VME IRQ Level 5 (IRQ5): VME_IRQ_LEV2=1
VME_IRQ_LEV1=0
VME_IRQ_LEV0=1
Value after Power-up Reset, Reset or Key Address ,,Reset register group LCA2" : OxFFFF0000

STR340 STRUCK January 1996

SFI 2%

6 VMETRTERMAIER SEQUENCER

Efght cimptenpis smisrededréoimgplenzersteorttdngeoduwation MMEe i@ pt. Festhuinterasipt qoantcéntarfabe
tadividue! byf ¢hat8ed/disabled . The VMEDbus interrupt Level (IRQ7 to 1) and the VME Interrupt Vector
(Status/Id) is specified in the VME IRQ Level and Vector register.

As described in much more detail in the following chapters, Fastbus cycles can be executed as VME

A4 RS2 uqytcdesinvbd creuendb teplisddydaaidauienced BIFQritgir tto theebdlR FRTh Gowpesatithdv Bkl

legietet6 address bits of the VME (A24), called Sequencer FIFO key addresses, specify the Fastbus

res dodllo(eintgsipeeialifiisotiores avkiistthaméiic D32 data specify the FASTBUS data during a Fastbus
write operation.

* Input NIM1: If the NIM1_IRQ is enabled then the NIM1_IRQ_FLAG is set with the leading

With the Sequencer FIF@dgy* addresses Mliwidlsinpossibiaio dkeguis tihéctrbdwivighsperaalcbmesimmsding
disable/clear write cycle.

* start autonomous blocktransfer (High speed Fastbus blocktransfer, DK(t) to DS(t) = 35 to 45ns)

* InptitIBHARMA limitcokitiierNimaR. bRpkkcagabled then the NIM2_IRQ_FLAG is set with the leading

* load DMA addressigeinteyf (Wib/1BbLsI3lavpatidiEbis Wiiege The claiarbds toithandfereshrresponding
* store DMA wordchsatibe/ahehiStrriesppynde.in Sequencer Data Output Fifo to build Event directory
* set/clear external signals (NIM, ECL, LEDs)

* Input NIM3: If the NIM3_IRQ is enabled then the NIM3_IRQ_FLAG is set with the leading
edge* of the NIM3 input. This flag is cleared with the corresponding
disable/clear write cycle.

6.1 SEQUENCER ENABLE (ARM)

* Input ECL1: If the ECL1_IRQ is enabled then the ECL1_IRQ_FLAG is set with the leading
After Power-On reset thedgsjueficahds @icabledamat allTthis Fifag are elepiyd Itvidthosiblectorespblalihg
sequencer with the VMidikeylatddeasansegusder Enable. The enabled sequencer checks continuously
the empty condition of the VME2SEQ Fifo. If the sequencer logic detects that the Fifo is not empty,
thimptheAdgaeBder: logid frahds AdXSdRUENIRQP I tenalh laddtiibe BrataA ot B4t ROVIH2AE(sFs60)vaitt
tries to execute the sequetecér glonoriand trahsiitioay negtdnd DML tlel JaMET RUALIX B4 ZFiFT.U nnmmse
of an error (exeption) theHisdflegdscivdiesuinithaticatty régadnieiagdidablefttethemusedcFASTBUS lines
will be cleared in the right order.

* Service Request: If the SR_IRQ (FASTBUS Service Request) is enabled then a SR on FASTBUS

Four error condition flaggemeraietinan antereadatiReviretheSeqlrentber Hisnuptgsgerice routine has the
generation of SR on FASTBUS to be cleared or the Interrupt has to be

* SEQ_CMD_ERRORXdisabletis error flag indicates that an invalid sequencer command was written
to the VME2SEQ Fifo (Protocol Fifo). For debugging it is possible to read

*SEQ CMD_FLAG: If thd&®EQheMast Fed@niRQ cismenablbdvendhthd 88QSaNIBN ¢er Al dtoset
fromretistersequencer then an internal interrupt is generated. The
SEQ_CMD_FLAG can be cleared with the VME key address Clear Sequencer

* SEQ_PRIM_ERRORCM Drkisgrror flag indicates that an exeption has occurred during executing a
FASTBUS primary address cycle. For debugging it is now possible to read

* SEQ_DISABLE: If theIBEQASTSABE EStHRGS is agistdedland et seyurendafoisrdiiablegbthen tha

intermrebsoterrupt is generated.

(NIBQldadiigedRR OBsistTdnsfeoroMlag indatatgO Yptcanadice pidorViay occurred during executing a
FASTBUS data cycle (secondary address, random data). For debugging it
Internal Interrupt ifis posdiielltdR@aBLAE FASTBUS Status register 2 to get more
orinformatidvi abi @t rdgson.
or NIM3_IRQ_FLAG
* SEQ_DMA_ERROR : ofThis er&CIfthgl RQidated@at an exception has occurred during executing a
oiFASTBAISXO B4R bIBCktFlnsie cycle. For debugging it is possible to read
othe FASII BRIG Ftal®s register 2 to get more information about the
orreason.SEQ_CMD_FLAG and SEQ_DISABLE_IRQ_FLAG
or SEQ_DISABLE_IRQ_FLAG

In case of an error the sequencer has to be reseted to clear the error flags and to clear the Fifos. Then
MaAetiHencer can be enabled again.

STR340 STRUCK January 1996

SFI 28

STR340 STRUCK January 1996

SHI

29

6.2 SEQUENCER FIFO KEY ADDRESSES

The sequencer commands are written to the VME2SEQ Fifo. The VME2SEQ Fifo consists of a
Sequencer Protocol Fifo and a Sequencer Data Input Fifo. The Sequencer Data Input Fifo stores the
data (32-bit) and the Protocol Fifo stores the lower part (A15 to A2) of the VME addresses (A32) during
the VME write cycle from the CPU to the VME2SEQ Fifo. The sequencer key address (Al5 to A2),
stored in the Protocol Fifo, detemines the action of the sequencer.

General definition of the sequencer key address or sequencer command:

A5 | Al4 | AI13 | Al2 | All | A10i A9 | A8 | A7 | A6 | A5 i A4 A3 | A2 | AL i A0
X i ox i ox i x X L ox i ox 10X F3 { F2 { F1 i FO |SEQCTR! FBEN i 0 { 0
SEQ CTR: Sequencer Control action Enable Bit
FB_EN: FASTBUS action Enable Bit
F3, F2, F1, FO: Function paramter
X: unction depending
6.2.1 FASTBUS actions
FASTBUS actions are enabled with SEQ_CTR =0and FB_EN =1
Al5 | Al4 | A13 | A12 | A1l | A10 i A9 | A8 | A7 | A6 | A5 | A4 A3 A2 Al i A0
X X X EG | RD | MS2 | MS1 | MSO | F3 F2 F1 FO 0 1 0 0

Note that the generation of EG is not vital and even not allowed when trying to pass through Segement
interconnects. For test purposes, however, the generation of EG helps to overcome problems due to
defective GAC controllers or modules which do not properly take into account the delays of EG when
generated by GAC controllers.

F3 | F2 | F1 | FO | Function Data words defines

0 0 0 0 | Primary address cycle (include Arbitration) FB Primary Address

0 0 0 1 | Primary address cycle (include Arbitration and holds mastership) FB Primary Address

0 0 1 0 | Device Release (Disconnect AS-AK lock) no

0 0 1 1 | Device Release (Disconnect AS-AK lock and releases mastership) no

0 1 0 0 | transfer data cycle FB Write Data

0 1 0 1 | transfer data cycle followed by a Device Release (Disconnect) FB Write Data

0 1 1 0 | cleanup data cycle (not impl) no

0 1 1 1 | nop (reserved)

1 0 0 0 | nop (reserved)

1 0 0 1 | load blocktransfer read/write VME address pointer VME Slave Addr.

1 0 1 0 | load limit counter,clear word counter, start autonomous blocktransfer Mode/Limit counter

1 0 1 1 | load limit counter and start autonomous blocktransfer Mode/Limit counter

1 1 0 0 | nop (reserved)

1 1 0 1 | store address pointer in Sequencer Data Input FiFo (SEQ2VME Fifo) no

1 1 1 0 | store DMA status and word counter in Sequencer Data Input FiFo no

1 1 1 1 | store only word counter Sequencer Data Input Fifo (SEQ2VME Fifo) no
STR340 STRUCK January 1996

SFI 30

6.2.1.1 Mode register and Limit counter (Sequencer Load)

The sequencer logic loads the Mode register and the Limit counter with the data which are read from
the Data Input Fifo (VME2SEQ) during executing the command “load limit counter,clear word counter,
start autonomous blocktransfer* before it starts the blocktransfer.

bit | name function

31 |reserved no

30 | reserved no

29 | reserved no

28 | DIRECT_MODE enables direct Mode

27 | VME_MODE enables VME Mode

26 | B64_MODE enable VME xBLT64 Blocktransfer (Option, on request)
25 | B32_MODE enable VME 32 bit Blocktransfer
24 | D32_MODE enable VME 32 bit Data cycles
23 |LIMIT_CNT23 Limit Counter bit 23 (MSB)

0 |LIMIT _CNTO Limit Counter bit 0 (LSB)

The Limit counter controls the maximal length of the FASTBUS blocktransfer if no other stop
condition (SS-response or Timeout) is detected.
The blocktransfer stops after <Limit counter > plus one word.

6.2.1.2 DMA Status register and Word Counter (Sequencer Store)

The sequencer logic stores the DMA status (blocktransfer) and word counter in the Sequencer Data
Output Fifo (SEQ2VME). The VME CPU has to read SEQ2VME Fifo to get this word.

Note: The Fifo is only readable, if the Fifo Flag EMPTY is not set. If the Fifo is not empty but the Fifo
Flag EMPTY is set, then a read cycle actualize only the EMPTY Flag and do not read the data from

the Fifo.
bit | name function
31 | reserved “0*
30 | reserved “0*
29 |DMA_VME_TIMEOUT |indicates a VME TIMEOUT during last DMA
28 | DMA_FB_TIMEOUT indicates a FASTBUS Timeout during last DMA
27 |DMA_LIMIT indicates that the last DMA stops by Limit Counter
26 | DMA_SS2 shows the SS2 bit from last DMA
25 |DMA_SS1 shows the SS1 bit from last DMA
24 | DMA_SSO shows the SSO bit from last DMA
23 | WORD_CNT23 Word counter bit 23 (MSB)
0 |WORD_CNTO Word counter bit 0 (LSB)
STR340 STRUCK January 1996

SFI 31

6.2.1.3 FASTBUS command key address assignments

A short overview list for better understanding the FASTBUS action command key addresses is given
only (refer to file SFI.H for more details or for use).

/* constants for primary address sequencer key addresses */

#define PRIM_DSR (0x0004) /* Data space logical or geogr. */

#define PRIM_CSR (0x0104) /* CSR space logical or geogr. */

#define PRIM_DSRM (0x0204) /* Data space broadcast */

#define PRIM_CSRM (0x0304) /* CSR space broadcast */

#define PRIM_AMS4 (0x0404) [* MS4 primary address */

#define PRIM_AMS5 (0x0504) /* MS5 primary address */

#define PRIM_AMS6 (0x0604) /* MS6 primary address */

#define PRIM_AMS7 (0x0704) [* MS7 primary address */

/* constants for primary address sequencer key addresses */

#define PRIM_HM_DSR (0x0014) /* Data space logical or geogr. and hold Mastership */
#define PRIM_HM_CSR (0x0114) /* CSR space logical or geogr. and hold Mastership */

#define PRIM_HM_DSRM (0x0214) [* Data space broadcast and hold Mastership */
#define PRIM_HM_CSRM (0x0314) /* CSR space broadcast and hold Mastership */

#define PRIM_EG (0x1000) /* to add for setting EG during primary addr. cycle */
#define RNDM_R (0x0844) /* random data read */

#define RNDM_W (0x0044) /* random data write */

#define SECAD_R (Ox0A44) /* secondary address read */

#define SECAD_W (0x0244) /* secondary address write */

#define RNDM_R_DIS (0x0854) /* random data read and followed disconnect from FB */
#define RNDM_W_DIS (0x0054) /* random data write and followed disconnect from FB */
#define DISCON (0x0024) [* disconnect from FASTBUS; release AS-AK lock */
#define DISCON_RM (0x0034) [* disconnect from FB; release AS-AK lock and release

Mastership (if hold) */

#define STORE_FRDB_WC (0x00E4) [* store wordcounter into SEQ2VME Fifo */
#define STORE_FRDB_AP (0x00D4) [* store ,next* DMA address pointer */

#define START_FRDB_WITH_CLEAR_WORD_COUNTER (Ox08A4) /* start DMA FRDB */

#define LOAD_DMA_ADDRESS_POINTER (0x0094) /* load ,next* DMA
address pointer; VME
Slave address */

/* intialize global variables for fast FASTBUS access */
fastPrimDsr = GetFastbusPtr(PRIM_DSR);
fastPrimCsr = GetFastbusPtr(PRIM_CSR);
fastPrimDsrM = GetFastbusPtr(PRIM_DSRM);
fastPrimCsrM = GetFastbusPtr(PRIM_CSRM);
fastPrimHmDsr = GetFastbusPtr(PRIM_HM_DSR);
fastPrimHmCsr = GetFastbusPtr(PRIM_HM_CSR);
fastPrimHmDsrM = GetFastbusPtr(PRIM_HM_DSRM);
fastPrimHmCsrM = GetFastbusPtr(PRIM_HM_CSRM);
fastSecadR = GetFastbusPtr(SECAD_R);
fastSecadW = GetFastbusPtr(SECAD_W);
fastRndmR = GetFastbusPtr(RNDM_R);
fastRndmw = GetFastbusPtr(RNDM_W);
fastRndmRDis = GetFastbusPtr(RNDM_R_DIS);
fastRndmWDis = GetFastbusPtr(RNDM_W_DIS);
fastDiscon = GetFastbusPtr(DISCON);
fastDisconRm = GetFastbusPtr(DISCON_RM);
fastStartFrdbWithClearWc = GetFastbusPtr(START_FRDB_WITH_CLEAR_WORD_COUNTER);
fastStoreFrdbWc = GetFastbusPtr(STORE_FRDB_WC);
fastStoreFrdbAp = GetFastbusPtr(STORE_FRDB_AP);

STR340 STRUCK January 1996

SFI 32

6.2.1.4 FASTBUS cycle command list examples

Sequencer command list for one FWC FASTBUS cycle:

fastPrimCsr PAddr; / CSR primary address cycle */
fastSecadwW SAddr; / secondary address write cycle */
fastRndmWNDis = Wdata; / random data write cycle */

Sequencer command list for one FRD FASTBUS cycle:

*fastPrimDsr
*fastSecadW
*fastRndmRDis

PAddr; /* Data space primary address cycle */
SAddr; /* secondary address write cycle */
dummy; /* random data read cycle */

Sequencer command list for one FWCM FASTBUS cycle and hold Mastership:

fastPrimHmMCsrM = PAddr; / CSR primary address broadcast cycle and hold Mastership

*/
fastSecadwW = SAddr; / secondary address write cycle */
fastRndmWDis = Wdata; / random data write cycle */

Sequencer command list for one FRDB FASTBUS cycle:

fastLoadDmaAddressPointer = Buffer; / VME Slave Memory address */
fastPrimDsr = PAddr; [primary address cycle */
fastSecadwW = Saddr; [secondary address cycle */
fastStartFrdbWithClearwc = Max_ExpLWord; / start dma, load mode and limit counter */
fastDiscon =reg32; [disconnect */

fastStoreFrdbWc =reg32; / get wordcount; store wordcount command
*/

STR340 STRUCK January 1996

SHI 33
6.2.2 Sequencer Control actions
Sequencer Control actions are enabled with SEQ_CTR =1and FB_EN =0
Al5 | A14 | A13 | A12 | All | A10 | A9 A8 | A7 | A6 i A5 | A4 A3 A2 Al | A0
X i RAl4 { RA13{ RA12 | RA1l | RA10 | RA9 | RA8 | F3 F2 F1 FO 1 0 0 0
RA14: Sequencer Ram address bit 14
RAS: Sequencer Ram address bit 8
The Sequencer Ram address bits RA7 to RAO are loaded with “0* from the sequencer logic. Therefore
the list hast to start on 0x100 address boundary.
F3 F2 F1 | FO | Function Data words defines
0 0 0 0 |setand clear Sequencer Out Signal register set/clr (J/K) data
(Leds, ECL, NIM)
0 0 0 1 | disable sequencer no
0 0 1 0 | enable ram sequencer mode (start list at seq. ram address <RA>) no
0 0 1 1 | disable ram sequencer mode no
(release ram sequencer mode and change to Fifo sequencer mode)
0 1 1 0 | setsequencer SEQ_CMD_FLAG (generates VME IRQ) no
0 1 0 X | no operation (reserved)
0 1 1 1 | no operation (reserved)
The SEQ_CMD_FLAG is settable from the sequencer and readable from the VME CPU via the VME
IRQ Source and MASK register bit 14. The VME CPU can clear this flag with VME Key Address
CLR_SEQ_CMD_FLAG. A VME Interrupt is generated if the corresponding interrupt enable bit is set
and the SEQ_CMD_FLAG is set.
STR340 STRUCK January 1996

SFI 34

6.3 SEQUENCER RAM

A sequencer ram is implemented to store and execute with high speed often used lists of FASTBUS
cycles. The sequencer ram can store 32K (32768) key address commands. The beginning of a list has to
store on a 0x100 (hex. $100) address boundary of the sequencer ram. So, it is possible to store up to
128 ($80) different lists. But it is also possible to store a list, which is longer than 0x100. The maximal
length of a list is only limited by the absolute end of the sequencer ram.

The command list (set of sequencer key addresses) has to load in the sequencer ram at a user specified
sequencer ram address. A stored list can be started with a single sequencer command if the sequencer is
enabled.

6.3.1 Sequencer RAM Loading

Flow of Loading the sequencer ram:

1. Reset the sequencer to be sure that the VME2SEQ Fifo is empty and the sequencer is diabled.

2. Load the sequencer ram address via the Next Sequencer Ram Address register with a user
defined ram address on a 0x100 address boundary (between 0x0000 and 0x7FQ0).

3. Enable the RAM Load Enable Mode via the VME Key Address Sequencer Ram Load
Enable.
This key address also disables the sequencer if the sequencer not yet disabled (did no reset).
Now the sequencer is in the RAM Load Mode and it checks continuously the empty condition
of the VME2SEQ Fifo. The VME CPU writes the list of commands in the manner as in the “FiFo
Mode* into the VME2SEQ Fifo. If the sequencer logic detects that the Fifo is not empty, then
the sequencer logic reads the Sequencer Protocol and the Data Input Fifos (VME2SEQ Fifo) and
writes these data into the sequencer ram. Following, the sequencer logic increments the
sequencer ram address.

4. Add and write an extra sequencer command (last command) to the VME2SEQ FiFo. This last
command has to be one of the following sequencer action commands:
* disable sequencer to disable the sequencer after execution of the list
* disable ram sequencer mode to change to normal FiFo mode after execution of the list
* or enable ram sequencer again to start an other ram list after execution of the list

5. disable after a little delay (500ns) the RAM Load Mode via the VME Key Address Sequencer
Ram L oad Disable.
Read the Next Sequencer Ram Addressregister and check the new address pointer:
<new address> = <old address> + <number of commands>

6. enablesequencer again (or call init routine).

6.3.2 Sequencer RAM List execution

To start a stored a command list it is only necessary to write the sequencer action command enable
ram sequencer mode with the sequencer ram start address of the list to the VME2SEQ FiFo.

STR340 STRUCK January 1996

SFI 35

6.4 SEQUENCER PROGRAMMING EXAMPLES

6.4.1 FASTBUS initialization routine

void InitFastbus(arbReg, timReg)
unsigned long arbReg, timReg;

{

unsigned long val32out; /* dummy /*

val32out = OL;

sfi.sequencerReset = val32out; [reset sequencer */
sfi.FastbusArbitrationLevelReg = arbReg; / set arbitration level */
sfi.FastbusTimeoutReg = timReg; [set timeout register */
sfi.sequencerEnable=val32out; / enable sequencer */

} I* InitFastbus */

6.4.2 Single FWC routine

unsigned long FWC(PAddr, SAddr,WData)

unsigned long PAddr;
unsigned long SAddr;
unsigned long WData;

{

register unsigned long reg32;
register Return = 0;

register Exit = 0;

fastPrimCsr = PAddr; / CSR primary address cycle */
fastSecadW = SAddr; [secondary address write cycle */
fastRndmWNDis = Wdata,; / data write cycle */

/* wait for sequencer done */
do
{
reg32 = *sfi.sequencerStatusReg;
switch(reg32 & 0x00008001)
{
case 0x00008001: [* OK */
Return = 0;
Exit = 1;
break;
case 0x00000001: /* Not Finished */
break;
case 0x00000000: /* Not Initialized */
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00020000;
Exit = 1;
break;
case 0x00008000: /* Bad Status is set, we will see */
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00010000;
Exit = 1;
break;

} while('Exit);
return(Return);
} * end FWC */

STR340 STRUCK January 1996

SFI 36

6.4.3 Single FRD routine

unsigned long FRD(PAddr, SAddr,rData)

unsigned long PAddr;
unsigned long SAddr;
unsigned long *rData;

{

register unsigned long reg32;
register Return = 0;

register Exit = 0;

fastPrimDsr = PAddr; / primary address cycle */
fastSecadW = SAddr; / secondary address cycle */
*fastRndmRDis = reg32;

/* wait for sequencer done */
do
{

reg32 = *sfi.sequencerStatusReg;

switch(reg32 & 0x00008001)
{
case 0x00008001: [* OK */
Return = 0;
Exit = 1;
/* read seq fifo flags */
/* check if EMPTY ; if EMPTY then Dummy read and Loop until not Empty */
[* else if not empty then read fifo */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{
reg32 = *sfi.readSeq2VmeFifoBase; /* dummy read */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{ [/*Error H'*
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00100000;

}
}
*rData = *sfi.readSeq2VmeFifoBase; /* read fifo */
break;
case 0x00000001: /* Not Finished */
break;
case 0x00000000: /* Not Initialized */

Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00020000;
Exit = 1;
break;
case 0x00008000: [* Bad Status is set, we will see */
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00010000;
Exit = 1;
break;
}
} while('Exit);
return(Return);
} /* End of FRD */

STR340 STRUCK January 1996

SFI 37

6.4.4 Single FRDB routine

unsigned long FRDB(PAddr,SAddr,Buffer,next_buffer,Max_ExpLWord,cnt_RecLWord,Mode)

unsigned long PAddr; [* Primary Address */
unsigned long SAddr; [* Secondary Address */
unsigned long Buffer; [* Address of LWord-Buffer (VME-Slave Address!!!)*/
unsigned long *next_buffer; /* Address of LWord-Buffer after READ */
unsigned long Max_ExpLWord,; /* Max. Count of 32Bit Datawords */
unsigned long *cnt_RecLWord, [* Count of Received 32Bit Datawords */
unsigned long Mode; /* Readout-Modus (Direct and/or VME) */
/* 0x10 only Direct */

/* 0x09 VMED32 Data cycle */
/* OXOA VMEDS32 Blocktransfer */
[* 0x19 Direct and VME32Datacycl. */
/* Ox1A Direct and VME32Blocktr. */
{
register unsigned long reg32;
register Return = 0; register Exit = 0;

Max_ExpLWord &= OxOOffffff;
Max_ExpLWord |= (Mode << 24);

fastLoadDmaAddressPointer = Buffer; / load VME Slave buffer address */
fastPrimDsr = Paddr; / primary address cycle */
fastSecadwW = SAddr; / secondary address cycle */
fastStartFrdbWithClearWc = Max_ExpLWord; / start dma ¥/
fastDiscon =reg32; / disconnect */
fastStoreFrdbWc =reg32; / get wordcount*/
fastStoreFrdbAp =reg32; [get adr.ptr. */
/* wait for sequencer done */
do

{

reg32 = *sfi.sequencerStatusReg;
switch(reg32 & 0x00008001)
{
case 0x00008001: [* OK */
Return = 0;
Exit = 1;
/* read seq fifo flags */
/* check if EMPTY ; if EMPTY then Dummy read and Loop until not Empty */
[* else if not empty then read fifo */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{
reg32 = *sfi.readSeq2VmeFifoBase; /* dummy read */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{ [/*Error 1I'*
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00100000;
}
}
[* read fifo */
*cnt_RecLWord = *sfi.readSeq2VmeFifoBase;
/* Check for FIFO Empty: */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{ /*Error 1I'*
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00040000;
}

*next_buffer = *sfi.readSeq2VmeFifoBase;

STR340 STRUCK January 1996

SFI 38

break;

case 0x00000001: /* Not Finished */
break;
case 0x00000000: /* Not Initialized */
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00020000;
Exit = 1;
break;
case 0x00008000: /* Bad Status is set, we will see */
Return = *sfi.sequencerStatusReg & 0x0000ffff;
Return |= 0x00010000;
Exit = 1;
break;
}
} while('Exit);
return(Return);
} * end FRDB */

6.4.5 Load Next EVENT and FRDB List execution example

unsigned long LNE_FRDB(prim1,Buffer,cnt_RecLWord)

unsigned long prim1; [* Primary Address */
unsigned long Buffer; /* Address of LWord-Buffer (VME-Slave Address!!!)*/
unsigned long *cnt_RecLWord; /* Count of Received 32Bit Datawords */

{

register unsigned long reg32;
register Return = 0;
register Exit = 0;

/* FWCM */

fastPrimCsrM = Ox15L; / primary address cycle */
fastSecadW = CSRO ; / secondary address cycle */
*fastRndmWDis = LNE ;

/* FRDB */

*fastLoadDmaAddressPointer = Buffer;

fastPrimDsr = prim1; [primary address cycle */

fastSecadwW = OxO0L; / secondary address cycle */
fastStartFrdbWithClearWc = OXxOAO07FFFL ; / start dma, max 8000 words; VME Block */
fastDiscon =reg32; / disconnect */

fastStoreFrdbWc =reg32; [get wordcount*/

/* generate NIM puls (set and clear) to clear external request */
fastWriteOutReg = 0x100L; [set NIM1 */
fastWriteOutReg = 0x1000000L; [clr NIM1 */

/* wait for sequencer done */
do
{
same asin FRDB example without read new addr ess pointer

}

return(Return);

}

STR340 STRUCK January 1996

SFI 39

6.4.6 Load a Command List in the Sequencer Ram example

unsigned long LoadRamLNE_FRDB(rStart, prim_start)

unsigned long rStart; /* Sequencer Ram Startaddress */
unsigned long prim_start; /* Primary Address */
{

register unsigned long reg32 = 0;
register Return = 0;
unsigned long iloop ;

sfi.sequencerReset = reg32 ; / reset sequencer */

/* load sequencer RAM address; befor enable LoadRam Mode !! */
*sfi.sequencerRamAddressReg = rStart;

/* enable Sequencer load ram mode */
*sfi.sequencerRamLoadEnable = reg32 ;

/* load list */

[* FWCM */

fastPrimHmMCsrM = Ox15L; / broadcast CSR with hold Master */
fastSecadwW =CSRO; / secondary address cycle */

fastRndmWDis =LNE ; / data write cycle */

/* FRDB; without Buffer address !! */

fastPrimDsr = prim_start; / primary address cycle */
fastSecadW = OxO0L; / secondary address cycle */
fastStartFrdbWithClearWc = OXOAO07FFFL; / start dma, max 8000 words; VME Block */
fastDisconRm =reg32; / disconnect and release Master */
fastStoreFrdbWc =reg32; / get wordcount*/

fastWriteOutReg = 0x100L; [set NIM1 */

fastWriteOutReg = 0x1000000L; [clr NIM1 */

/* set disable ram mode command to sequencer ram */
*fastDisableRamMode =reg32 ;

/* wait short moment, dummy loop */
for (iloop=0;iloop<4;iloop++)
reg32 ++;

/* disable sequencer ram load mode */
*sfi.sequencerRamLoadDisable = reg32;

/* enable sequencer again */
*sfi.sequencerEnable=reg32;

return(Return);

}

STR340 STRUCK January 1996

SFI 40

6.4.7 Event Readout example using a Ram List

unsigned long EventReadRamFast(rStart,prim_Ipa,Buffer)

unsigned long rStart;
unsigned long prim_Ipa;
unsigned long Buffer;
{
register FB_Status, reg32;
register Exit = 0;
unsigned long ExpWords;
unsigned long i,j;
unsigned long i_errors=0x0L;
static unsigned long tReg=0x73, aReg=0x15;

EnableForceA24D32Mode();
i_errors =0;

/* wait until NIM1 active (no dead timeout !) */
reg32 = *sfi.sequencerFifoFlagAndEcINiminputReg ;
while ((reg32 & 0x00001000) ==0)

{
reg32 = *sfi.sequencerFifoFlagAndEcINimInputReg ;

}

/* generate Test ECL outputs (all four outputs) only Tests 10us */
*sfi.writeVmeOutSignalReg = OxfOL
/* dummy loop */
for (i=0;i<6;i++)
*sfi.writeVmeOutSignalReg = OxOL ;
*sfi.writeVmeOutSignalReg = 0xfOO00OL ;

[* sequecer commands; load new VME buffer address and start RAM List */
fastLoadDmaAddressPointer = Buffer; / load new buffer address */

/* enable execution of command list in sequencer ram at address */
(fastEnableRamSequencer+rStart/4L) = rStart; / casting ! */

/* wait for sequencer done */
Exit = 0;
do
{
reg32 = *sfi.sequencerStatusReg;
switch(reg32 & 0x00008001)
{
case 0x00008001:
I* OK */
FB_Status = 0;
Exit = 1;
/* read seq fifo flags */
/* check if EMPTY ; if EMPTY then Dummy read and Loop until not Empty */
* else if not empty then read fifo */

reg32 = *sfi.readSeqFifoFlags;

if((reg32 & 0x00000010) == 0x00000010)
{
reg32 = *sfi.readSeq2VmeFifoBase; /* dummy read */
reg32 = *sfi.readSeqFifoFlags;
if((reg32 & 0x00000010) == 0x00000010)
{
[* Error 111 */
FB_Status = *sfi.sequencerStatusReg & 0x0000ffff;
FB_Status |= 0x00100000;

STR340 STRUCK January 1996

SFI 41

}
}
[* read fifo */
ExpWords = *sfi.readSeq2VmeFifoBase;
break;

case 0x00000001:
/* Not Finished */
break;
case 0x00000000:
/* Not Initialized */
FB_Status = *sfi.sequencerStatusReg & 0x0000ffff;
FB_Status |= 0x00020000;
Exit = 1;
break;
case 0x00008000:
/* Bad Status is set, we will see */
FB_Status = *sfi.sequencerStatusReg & 0x0000ffff;
FB_Status |= 0x00010000;
Exit = 1;
break;

} while('Exit);

if(FB_Status)
{
processError(INTERPRET_STATUS | COUNT_ERROR | WAIT_ON_ERROR,
&i_errors,

FB_Status,
*sfi.FastbusStatusReg1,
*sfi.FastbusStatusReg?2);
InitFastbus(aReg, tReQ);
i_errors ++;
}
}

if ('FB_Status)
{

printf("ExpWords: %08IX\n",ExpWords);

err_dmareg((ExpWords & 0x3f000000));

printf("data read:\n");

for(i=0;i<(ExpWords & 0x0Offffff);i+=8)

{
for(j=i; (j<(ExpWords & Ox0O0ffffff) && ((j-i)<8));j++)

printf(" %08IX",((long*)Buffer)[j]);

printf("\n");

}

/* WaitForEnter(); */

return(i_errors);

}

STR340 STRUCK January 1996

SFI 42

7 AUXILIARY CONNECTOR INTERFACE

7.1 AUXILIARY CONNECTOR SCHEMATIC

STR340 STRUCK January 1996

SFI 43

7.2 USER TRIGGER INTERFACE

The Auxiliary connector provides the possibility to add a user trigger logic on an auxiliary
module. For setup of the user logic it is possible to write a 32-bit word from the VME CPU to
the auxiliary interface. It is also possible to read a 32-bit word from the auxiliary interface, used
for example as trigger information. The interface offers also input lines to generate a VME
interrupt or to get bit informations and output lines to set/clear user logic and enable/disable data

pathes.

Auxiliary signals:

Auxiliary Connector Bit B42:

Auxiliary Connector Bit A10:
Auxiliary Connector Bit A28:
Auxiliary Connector Bit A45:

Auxiliary Connector Bit B40:

Auxiliary Connector Bit B43:

Auxiliary Connector Bit B44:

Auxiliary Connector Bit B45:

Auxiliary Connector Bit B46:

Auxiliary Connector Bit A38:

TTL input
This Input is readable via the ,,Sequencer Flag and ECL/NIM
Input register. An open (not used) signal is high. It is prefered to
use this input signal as a low active signal. If the interrupt
AUX_B42 is enabled then a TTL high to low transition (down;
edge sensitive) sets the interrupt flag AUX_B42_IRQ_FLAG.

TTL output (low after Reset)

TTL output (low after Reset)

TTL output (low after Reset)

These Outputs will be set and cleared by access to the ,,VME
Out-Signal Register*.

Note: It is only allowed to set A45 if the sequencer is
disabled.

TTL output pulse (low active)
The VME CPU generates with the Key Address generate
AUX_B40 pulsea TTL low active pulse on this line.

AUX2FB_OE_L (TTL input, pullup resistor on this line)

The AUX2FB_OE_L signal enables (low active) the data path
from the auxiliary connector (BUF_AD) to the ,internal
FB_IO_AD Bus*.

Note: It isonly allowed to enableif the sequencer isdisabled !

AUX2FB_LE_L (TTL input, pullup resistor on this line)
The AUX2FB_LE_L signal puts the AUX2FB data buffer either
in latch mode (high) or in transparent mode (low).

FB2AUX_OE_L (TTL input, pullup resistor on this line)

The FB2AUX_OE_L signal enables (low active) the data path
from the ,internal FB_IO_AD Bus“ to the auxiliary connector
(BUF_AD).

FB2AUX_LE_L (TTL input, pullup resistor on this line)
The FB2AUX_LE_L signal puts the FB2AUX data buffer either
in latch mode (high) or in transparent mode (low).

LCA_RDY_L (TTL output)
This signal indicates that the LCAs on the SFI are configured
(low). A high signal indicates a reset condition.

STR340

STRUCK January 1996

SFI 44

Example: readout a 32-bit Triggerword from the Auxiliary board

Use of B42: Receive external trigger (polling or VME_IRQ)

Use of A10: Clear external trigger

Use of A28: Enable data path from auxiliary connector to internal FB_IO_AD Bus
Set A28 to high to enable data path:
AUX2FB_OE_L =!(A28& !LCA_RDY_l)

With B44 it is possible to store data. (TTL low : transparent; TTL High : latched)

Flow: * poll if B42 or IRQ (data are now valid)
* set A28 to enable data path (Note: Master sequencer have to disabled or Idle !)
* read ,,Internal FASTBUS 1/0 BUS* ($b0 1x00) with the VME CPU
* clear A28 to disable data path again
*set A10 (clear Trigger)
* clear A10

Example: write a 32-bit Triggerword to the Auxiliary board

Use of B40: Low active latch pulse to store data on user logic

Use of B46: FB2AUX_LE_L is set low (transparent)

Use of A45: Enable data path from internal FB_1O_AD Bus to the auxiliary connector.
Set A45 to high to enable data path:
FB2AUX_OE_L =!(A45& ILCA_RDY_L)

Flow: * write the 32-bit word to the internal Aux-port register
(implemented in the sequencer LCA)
* set A45 to enable data path (auxiliary buffer and LCA internal buffer)
and to inform the user logic.
(Note: Master sequencer has to be disabled !)
* generate pulse on B40 to latch data on user logic
* clear A45 to disable data path (auxiliary buffer and LCA internal buffer)

STR340

STRUCK January 1996

SFI 45

7.3 FASTBUS BLOCKTRANSFER DIRECT MODE INTERFACE

It is possible to push the read data to a user logic on a auxiliary module if the Direct Mode is
enabled during a FASTBUS blocktransfer read cycle.

Auxiliary signalsfor blocktransfer read (dir ect mode):

Auxiliary Connector Bit A40:

Auxiliary Connector Bit A41:

Auxiliary Connector Bit B37:

uxiliary Connector Bit B45:

Auxiliary Connector Bit B46:

Auxiliary Connector Bit A38:

FB2AUX_DMA_WEN L (TTL output)
The FB2AUX_DMA_WEN_L signal is active (low) during the
blocktransfer if the Direct Mode is enabled to arm the user logic.

FB2AUX_DMA_WCLK (TTL output)
With FB2AUX_DMA_CLK signal (low to high) the data on the
BUF_AD Bus become valid (setup and holdtime = 15 ns).

FB2AUX_DMA_WAIT_L (TTL input, pullup resistor)

It is possible to delay the blocktransfer read on FASTBUS with a
low valid FB2ZAUX_DMA_WAIT_L signal.

Note: After the user logic has asserted this signal it is possible
that the logic pushes still one data word to the auxiliary port.

FB2AUX_OE_L (TTL input, pullup resistor on this line)

The FB2AUX_OE_L signal enables (low active) the data path
from the ,internal FB_IO_AD Bus“ to the auxiliary connector
(BUF_AD).

FB2AUX_LE_L (TTL input, pullup resistor on this line)
The FB2AUX_LE_L signal puts the FB2AUX data buffer either
in latch mode (high) or in transparent mode (low).

LCA_RDY_L (TTL output)
This signal indicates that the LCAs on the SFI are configured
(low). A high signal indicates a reset condition.

STR340

STRUCK January 1996

SFI 46

8 FRONT PANEL

The SFI front panel provides connectors for inputs and outputs and LEDs to indicate the module status

and to use for debugging.

8.1 LEDs

After Power On Reset or Reset (NIM Input or VME SYSRESET, depending of the Jumper J502) the
LCAs will be configured. At configuration time (1 to 2 seconds) all LEDs are on (Led test) except the
RDY LED. After configuration only the RDY LED is on.

RDY

TST

VSL

VMA

FB

DMA

SFF

SRA

L1

L2

L3

L4

Green; indicates that the SFI Logic (LCA) is ready
Red; indicates that after a Reset a Module Test design
will be loaded

Yellow; this LED is lit whenever the SFI is attached to
VME as a slave

Yellow, this LED is lit whenever the SFI is VME Master
(Blocktransfer Read)

Yellow, this LED is lit whenever the SFI is FASTBUS
Master
Green, this LED is lit whenever the SFI carries out a DMA

Green, this LED is lit whenever the SFI FB Master
sequencer is enabled

Green, this LED is lit whenever the SFI FB Master
sequencer Ram Mode is enabled

Green, this LED is lit whenever the corresponding bit in
the Outsignal registers is set

Red, this LED is lit whenever the corresponding bit in the
Outsignal registers is set

Yellow, this LED is lit whenever the corresponding bit in
the Outsignal registers is set

Green, this LED is lit whenever the corresponding bit in
the Outsignal registers is set

STR340 STRUCK January 1996

SFI 47

8.2 INPUTS/OUTPUTS

The SFI owns at the front panel four differential ECL compatible Inputs and Outputs, four NIM Inputs,
three NIM Outputs and four TTL level Outputs.

The Output signals are set/cleared (bit selective set/clear function) from the VME CPU or from the
FASTBUS sequencer (see VME/Sequencer Out-Signal register).

The status of the Input signals (except the NIM Input Reset) can be read via a register (Sequencer Fifo
Flag and ECL/NIM Input register) from the VME CPU.

Furthermore the three NIM Inputs and the ECL Input 1 signals are used for the VME Interrupt
generation (edge sensitive logic; see VME Interrupt).

STR340 STRUCK January 1996

SFI 48

8.2.1 Schematic differential ECL In/Output

STR340 STRUCK January 1996

SFI 49

8.2.2 Schematic NIM In/Output

STR340 STRUCK January 1996

SHI

50

9 POWER REQUIREMENTS FOR THE SFI

Voltage SFI Current VME module(s) Current
+5V 5A maximum 13 A
5.2V 15A
-2V 0.3A

The Power consumption of the VME modules has to be added to the SFI consumption (5 V).
But, take care that the maximum 5V-current does not excees 18 A.

On the SFI are voltage regulators to convert +15V/-15V to +12V/-12V for the VME modules.
The current of each voltage is limited to 1A.

Voltage SFI Current VME module(s) Current
+15V max. 1 A +12V maximum 1 A
-15V max. 1 A -12 V maximum 1A
STR340 STRUCK January 1996

SFI 51

10 JUMPER

Jumper function

J500
J502

J951
J952
J953
J954

J882
J883

Selection of LCA Design
Selection of using VME SYSRESET

Enable/Disable 50 Ohm Termination on NIM Input 1
Enable/Disable 50 Ohm Termination on NIM Input 2
Enable/Disable 50 Ohm Termination on NIM Input 3
Enable/Disable 50 Ohm Termination on NIM Reset Input

Selection of VME Requester Level
VME Arbiter Type

Jumper setting

Jumper J500: Selection of LCA Design

closed: SFI Normal operating LCA Design will be loaded after Reset
open: SFI Test LCA Design will be loaded after Reset

Jumper J502: Selection of using VME SYSRESET

closed: A VME SYSRESET will reset the SFI and a SFI NIM Reset Input
will not generate a VME SYSRESET

open: A VME SYSRESET will not reset the SFI and a SFI NIM Reset
Input and a Power On Reset will generate a VME SYSRESET

Jumper J95x: Enable/Disable 50 Ohm Termination on NIM Input

closed: Enable 50 Ohm Termination
open: Disable 50 Ohm Termination

Jumper J883: VME Arbiter Type

closed: RWD (Release when done)
open: ROR (Release on Request)

STR340

STRUCK January 1996

SHI

52

Jumper 882: VME Master Requester Level

Levd 3:
20 11

0O000O00O0OO0O0O0

I | | I
0O000OG00O00O0

1 10
Levd 2:
20 11

(ONONONONONONONONONG

I I I I
0000000000

1 10
Levd 1:
20 11

0O0O0O0O0O00O0O0O0

I I I I
0000000000

1 10
Levd O:
20 11

0O0O0O0OO0O00O0O0O0

| | | |
0000000000

1 10

STR340

STRUCK

January 1996

