New results in rare pion and muon decays

Anthony Palladino (for the PEN Collaboration)

University of Virginia

CIPANP 2012 St. Petersburg, Florida, 30 May 2012

Outline

Overview of allowed π and μ decays

Apparatus and method

Prior results

 $\pi^+ \rightarrow {\rm e}^+ \nu$ decay: motivation

Current status and plans

Summary

Known and measured pion and muon decays

PEN experiment:

Recent π , μ allowed decay measurements

o SM checks related to CKM unitarity ► $\pi^+ \rightarrow e^+ \nu_e \gamma$ (or $e^+ e^-$) PIBETA ('99–'04), PEN ('06–) $\circ \mathbf{F}_{\mathbf{A}}/\mathbf{F}_{\mathbf{V}}, \pi$ polarizability (χ PT calibration) o tensor coupling besides V - A (?) o departures from $\mathbf{V} - \mathbf{A}$ in \mathcal{L}_{weak} ► $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$) PIBETA ('04), PEN ('06-) o departures from V - A in \mathcal{L}_{weak} ► $\pi^+ \rightarrow e^+ \nu_e$ PEN (2006-) PiENu ('06-) $\circ \mathbf{e} \cdot \boldsymbol{\mu}$ universality \circ pseudoscalar coupling besides V – A $\circ \nu$ sector anomalies, Majoron searches, \mathbf{m}_{h+} , PS I-q's, V I-q's, ... o search for signs of SUSY (MSSM)

The PIBETA/PEN apparatus

stopped π^+ beam active target counter 240-det. Csl calorimeter central tracking digitized waveforms stable temp./humidity

PEN experiment:

Apparatus and method

30 May '12

PIBETA result for π_{β} decay [PRL **93**, 181803 (2004)]

$$\begin{split} \mathcal{B}_{\pi\beta}^{\text{exp-t}} &= \left[1.040 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst})\right] \times 10^{-8} \,, \\ \mathcal{B}_{\pi\beta}^{\text{exp-e}} &= \left[1.036 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst}) \pm 0.003 \,(\pi_{\text{e2}})\right] \times 10^{-8} \,, \end{split}$$

McFarlane et al. [PRD 1985]: $B = (1.026 \pm 0.039) \times 10^{-8}$

SM Prediction (PDG):

$$B = 1.038 - 1.041 \times 10^{-8}$$
 (90% C.L.)
 $(1.005 - 1.007 \times 10^{-8}$ excl. rad. corr.)

 \Rightarrow Most sensitive test of CVC/radiative corr. in a meson to date!

PDG 2010: $V_{ud} = 0.97425(22)$ PIBETA: $V_{ud} = 0.9748(25)$ or $V_{ud} = 0.9728(30)$.

Summary of PIBETA results on $\pi \rightarrow e \nu \gamma$ [PRL 103, 051802 (2009)]

$F_V = 0.0258 \pm 0.0017$	(14×)	
${\sf F}_{\sf A} = 0.0119 \pm 0.0001^{ m exp}_{({\sf F}_{ m V}^{ m CVC})}$	(16×)	
$a = 0.10 \pm 0.06 \; (q^2 \text{ dep of } F_V)$ (∞)		
$-5.2 imes 10^{-4} < F_T < 4.0 imes 10^{-4}$	4 90 % C.L.	
Derived pion polarizability and $\pi^{f 0}$ lifetime (at L.O.):		
$lpha_{E}=-eta_{M}=$ (2.783 \pm 0.023 $_{exp}$) $ imes$ 10 $^{-4}$ fm 3		
$ au_{\pi^0} = (8.5 \pm 1.1) imes 10^{-17}$ s	∫ current PDG avg: 8.4 (4)	
	PrimEx PRL '10: 7.82 (22)	

 ${\sf B}_{\pi_{
m e2\gamma}}({\sf E}_{\gamma}>10\,{
m MeV}, heta_{
m e\gamma}>40^\circ)=73.86(54) imes10^{-8}~(17 imes)$

Similar improvements from muon radiative decay forthcoming

Above results will be improved with new PEN data analysis.

A. Palladino (UVa)

PEN experiment:

Prior results

$\pi ightarrow {f e} u$ decay: SM calculations; measurements

Modern theoretical calculations:

$$B_{\mathsf{calc}} = rac{\Gamma(\pi o e ar{
u}(\gamma))}{\Gamma(\pi o \mu ar{
u}(\gamma))}_{\mathsf{calc}} =$$

 $\begin{cases} 1.2352 (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2354 (2) \times 10^{-4} & \text{Finkemeier, [PL B$ **387** $(1996) 391]} \\ 1.2352 (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN, PiENu aim at:
$$\frac{\delta B}{B} \simeq 5 \times 10^{-4}$$

π_{e2} Decay and the SM

A. Palladino (UVa)

 $B(\pi_{e2})$ in SM dominated by (V - A) helicity suppression. Deviations primarily due to PS int. terms. Most general 4-fermion π_{e2} amplitude:

$$\begin{split} \frac{\mathcal{G}_{\mathcal{F}}}{\sqrt{2}} \Big[\left(\bar{d} \gamma_{\mu} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{\mu} \gamma^{5} (1 - \gamma^{5}) e \right) f_{\mathsf{AL}}^{e} \\ &+ f_{\mathsf{PL}}^{e} \left(\bar{d} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{5} (1 - \gamma^{5}) e \right) \Big] + \mathsf{r.h.} \ \nu \ \mathsf{term} \end{split}$$

In the SM: $f_{AL}^{\ell} = 1$, while $f_{XR}^{\ell} = f_{PX}^{\ell} = 0$, with $\ell = e, \mu$.

Strong helicity suppression amplifies sensitivity to f_{PL}^e :

$$\frac{B_{\pi e 2}^{\text{obs}} - B_{\pi e 2}^{\text{SM}}}{B_{\pi e 2}^{\text{SM}}} = \frac{\Delta B}{B^{\text{SM}}} = \dots \simeq \frac{2m_{\pi}^2}{m_e(m_u + m_d)} f_{\text{PL}}^e \simeq \boxed{7700 f_{\text{PL}}^e} !$$

Tgt accuracy of the PEN experiment, $\Delta B/B \simeq 5 \times 10^{-4}$, translates into attractive mass limits:

PEN experiment: $\pi^+ \rightarrow e^+ \nu$ decay: motivation 30 May '12 9 / 23

Example mass bounds from PEN goal accuracy

(a) Charged Higgs, m_{H+} [Shanker, NP B204 (82) 375] Given a mixing angle suppression $S \approx 10^{-2}$, we get

$$f_{\rm PL}^e \approx S rac{m_t m_{ au}}{m_{\rm H+}^2}$$
 yielding $m_{\rm H+} > 6.9 \, {
m TeV}$.

(b) Pseudoscalar leptoquarks, $m_{\rm P}$

Given an estimated effective Yukawa coupling of $y \simeq 1/250$, we can find $m_{\rm P}$, mass of the color-triplet PS *I*-*q*:

$$f_{\rm PL}^e \approx rac{\sqrt{2}}{G_F} rac{y^2}{2m_{
m P}^2}$$
 yielding $m_{
m P} > 3.8\,{
m TeV}$

(c) Vector leptoquarks, M_G

Following Shanker who assumes gauge coupling $g \simeq g_{SU(2)}$, we get:

$$f_{\rm PL}^e \approx \frac{4M_W^2}{M_G^2}$$
 yielding $M_G > 630 \,{\rm TeV}$.

📕 A. Palladino (UVa)

PEN experiment:

 $\pi^+ \rightarrow e^+ \nu$ decay: motivation

30 May '12 11 / 23

Lepton universality (and neutrinos) From

$$\begin{split} R_{e/\mu} &= \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} = \frac{g_e^2}{g_\mu^2} \frac{m_e^2}{m_\mu^2} \frac{(1 - m_e^2/m_\mu^2)^2}{(1 - m_\mu^2/m_\pi^2)^2} \left(1 + \delta R_{e/\mu}\right) \\ R_{\tau/\pi} &= \frac{\Gamma(\tau \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} = \frac{g_\tau^2}{g_\mu^2} \frac{m_\tau^3}{2m_\mu^2 m_\pi} \frac{(1 - m_\pi^2/m_\tau^2)^2}{(1 - m_\mu^2/m_\pi^2)^2} \left(1 + \delta R_{\tau/\pi}\right) \end{split}$$

one can evaluate

For comparison

$$\left(rac{g_e}{g_\mu}
ight)_W = 0.999 \pm 0.011 \quad ext{and} \quad \left(rac{g_ au}{g_e}
ight)_W = 1.029 \pm 0.014 \,.$$

[Presently allowed level of LUV could account for "NuTeV anomaly."]

A. Palladino (UVa)

PEN experiment: $\pi^+ \rightarrow e^+ \nu$ decay: motivation

A. Palladino (UVa)

PEN experiment:

 $\pi^+ \rightarrow {\rm e}^+ \nu$ decay: motivation

30 May '12 13 / 23

PEN experiment: status and plans

- Approved in 2006; development runs: 2007, '08; data runs '09, '10.
- Improved beam tracking (miniTPC) implemented in '09, '10 runs.
- ► > 20 M π_{e2} 's recorded $\Rightarrow (\delta B/B)_{stat} \simeq 2 \times 10^{-4}$.

Current status and plans

Pulse Shaping

Developed an iterative program to create a digital adaptive filter.

Input:

A. Palladino (UVa)

PEN experiment:

Current status and plans

Pulse Shaping

- Filtering (Shaping) isolates the monoenergetic muon for energy calibration.
- A. Palladino, A. van der Schaaf, D. Počanić, * "Reconstructing Detector Waveforms with Overlapping Pulses," to be submitted for publication, 2012.

$\pi^+ ightarrow \mu^+ ightarrow e^+$ Event, Waveform Fit

 $\pi^+ \rightarrow e^+$ Event, Waveform Fit

Waveform Fitting Results

Maximum Likelihood Analysis

One likelihood function encompassing many observables and processes.

$$\mathcal{L}\left(\overrightarrow{x}_{e} ; f_{m}\right) = \prod_{e=1}^{\mathcal{N}} \left[\sum_{m=1}^{M} f_{m} P_{m}(\overrightarrow{x}_{e})\right]$$

where $\ensuremath{\mathcal{N}}$ is the number of events, and

 (f_m) fraction of process m

• $f_{\pi_{\mathrm{e}2}},~\pi^+ o e^+$

•
$$f_{\pi_{\mu_2}}, \ \pi^+
ightarrow \mu^+
ightarrow e^+$$

- f_{Acc} , Accidentals / Pile-up
- $f_{\rm DIF}$, Pion Decays-in-flight
- $f_{\rm Had}$, Proton
- *f*_?, etc.

Model: Probability Distribution Functions, Pm Energy Histograms stacked on top of each other

$$\mathcal{L}\left(\overrightarrow{E}_{\text{Total}}, \overrightarrow{\Delta t}; f_{\pi_{e2}}, f_{\pi_{\mu 2}}, f_{\text{Acc}}, f_{\text{DIF}}, f_{\text{Had}}\right)$$

- π_{µ2}
- π_{e2}
- Accidental Coincidence
- π Decay-in-flight
- Hadronic (proton)

A. Palladino (UVa)

PEN experiment:

Current status and plans

30 May '12 20 / 23

 $\begin{array}{l} \mbox{Preliminary Result (Blinded)} \\ R_{\pi_{e2}}^{\rm ML} = [1.112 \pm 0.002 ({\rm stat.})] \times 10^4 \end{array}$

 $\frac{\Delta R_{\pi_{e2}}^{\rm ML}}{R_{\pi_{e2}}^{\rm ML}} = 0.0018$

 $\frac{\Delta R_{\pi_{e2}}^{\rm PDG}}{R_{\pi_{e2}}^{\rm PDG}} = 0.0033$

$$R_{\pi_{e^2}}^{
m PDG} = [1.230 \pm 0.004 ({
m comb.})] imes 10^4$$

A. Palladino (UVa)

PEN experiment:

Current status and plans

30 May '12

Summary

- A significant experimental effort is under way to make use of the unparalleled theoretical precision in the weak interactions of the lightest particles.
- Information obtained is complementary to expected collider results, and necessary for their proper interpretation.
- Orders of magnitude improvement in precision has been achieved; more lie in store.
- Modest scale of investment of resources required.
- Unique opportunity for scientific advancement.
- Great projects for graduate students and postdocs—full range of professional training.

Current and former PIBETA and PEN collaborators

L. P. Alonzi^a, K. Assamagan^a, V. A. Baranov^b, W. Bertl^c, C. Broennimann^c, S. Bruch^a, M. Bychkov^a, Yu.M. Bystritsky^b, M. Daum^c, T. Flügel^c, E. Frlež^a, R. Frosch^c, K. Keeter^a, V.A. Kalinnikov^b, N.V. Khomutov^b, J. Koglin^a, A.S. Korenchenko^b, S.M. Korenchenko^b, M. Korolija^d, T. Kozlowski^e, N.P. Kravchuk^b, N.A. Kuchinsky^b, D. Lawrence^h, W. Li^a, J. S. McCarthy^a, R. C. Minehart^a, D. Mzhavia^{b, f}, A. Palladino^{a, c}, D. Počanić^{a*}, B. Ritchie^h, S. Ritt^{a, c}, P. Robmann^g, O.A. Rondon-Aramayo^a, A.M. Rozhdestvensky^b, T. Sakhelashvili^f, S.N. Shkarovskiy^b, P. L. Slocum^a, L. C. Smith^a, N. Soić^d, U. Straumann^g, I. Supek^d, P. Truöl^g, Z. Tsamalaidze^f, A. van der Schaaf^{g*}, E.P. Velicheva^b, V.P. Volnykh^b, Y. Wang^a, C. Wigger^c, H.-P. Wirtz^c, K. Ziock^a.

^a Univ. of <mark>Virginia</mark> , USA	^b JINR, <mark>Dubna</mark> , Russia
^c PSI, Switzerland	^d IRB, <mark>Zagreb</mark> , Croatia
° <mark>Swierk</mark> , Poland	^f IHEP, <mark>Tbilisi</mark> , Georgia
^g Univ. Zürich, Switzerland	^h Arizona State Univ., USA

Home pages: http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu

A. Palladino (UVa)

PEN experiment:

Summary