Investigating Lepton Universality via a Measurement of the Positronic Pion Decay Branching Ratio

Anthony Palladino

Advisor: Dinko Počanić

Ph.D. Dissertation Defense Charlottesville, Virginia, USA 06 December 2011

Outline

Introduction

Theory of Pion Decay Review of Helicity Suppresion Physics Motivation Lepton Universality

PEN Experiment

Previous Measurements TRIUMF and PSI PEN Detector

Analysis

Waveform Fitting Pulse Shaping and the Modified χ^2 Objective Function Maximum Likelihood Analysis Observables, Processes, and Probability Distribution Functions

Conclusions

Introduction Theory of Pion Decay

Theory of π^+ Decay

Quark Content: $\pi^+ = u\overline{d}$

Mass: $m_{\pi^+} = 139.6 \text{ MeV}$

Lifetime: $au_{\pi^+} = 26.03$ ns

Decay Mode	Branching Fraction	
$\pi^+ \to \mu^+ \nu_\mu(\gamma)$	0.9998770(4)	
$\pi^+ ightarrow \mu^+ u_\mu \gamma_{\scriptscriptstyle (E_\gamma > 1 { m MeV})}$	$2.00(25) imes 10^{-4}$	Bressi et al. '98
$\pi^+ ightarrow e^+ u_e(\gamma)$	$1.230(4) imes 10^{-4}$	Czapek et al. '93, Britton et al. '92, Bryman et al. '8
$\pi^+ ightarrow e^+ u_e \gamma_{\scriptscriptstyle (E_\gamma > 10 { m MeV})}$	$7.386(54) imes 10^{-7}$	Bychkov et al. '09
$\pi^+ o \pi^0 e^+ \nu_e$	$1.036(6) imes 10^{-8}$	Počanić et al. '04
$\pi^+ ightarrow e^+ u_e e^+ e^-$	$3.2(5) imes 10^{-9}$	Egli et al. '89

Theory of π^+ Decay

Why is $\pi^+
ightarrow e^+
u_e$ a rare decay? Helicity Suppression

Conservation of Angular Momentum: In π rest frame, the π has S = 0.

The outgoing lepton pair (each spin 1/2) must combine to give S = 0

- both Right-Handed (Positive Helicity), or
- both Left-Handed (Negative Helicity)

Property that if m = 0:

- All S = 1/2 particles are Left-Handed (Negative Helicity)
- All S = 1/2 antiparticles are Right-Handed (Positive Helicity)

 \Rightarrow The negative helicity ν_e (ν_μ) forces the e^+ (μ^+) into a negative helicity state. But,

$$m_{e^+} \ll m_{\mu^+} \qquad (m_{\mu^+} \simeq 200 m_{e^+})$$

Theory of π^+ Decay

Helicity: For v = c, fraction "violating" = 0.

For a given E, $v_e > v_\mu \Rightarrow e$ is less likely to have wrong helicity.

"Helicity Conservation"
$$\iff \frac{1}{2} + \frac{1}{2}\frac{v}{c}$$

"Helicity Violation"
$$\iff \frac{1}{2} - \frac{1}{2}\frac{v}{c}$$

$$\frac{\text{"HelicityViolation"}(e^+)}{\text{"HelicityViolation"}(\mu^+)} \approx 3.2 \times 10^{-5}$$

 $\frac{\pi \text{ Decay Phase Space}:}{\text{Since the } e^+ \text{ is lighter, the } \pi^+ \to e^+ \nu_e \text{ decay has a larger phase space than the } \pi^+ \to \mu^+ \nu_\mu \text{ decay.} \Rightarrow \text{ gives a factor } \boxed{\sim 3.3}$

$$\frac{\Gamma(\pi^+ \rightarrow e^+ \nu_e)}{\Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu)} \approx 3.3 \times (3.2 \times 10^{-5}) \approx 10^{-4}$$

Introduction Theory of Pion Decay

Theory of π^+ Decay

The PEN Experiment

• Precision Measurement of the $\pi^+ \rightarrow e^+ \nu_e$ branching ratio.

$$R_{\pi_{e2}} = \frac{\Gamma(\pi^+ \to e^+ \nu_e(\gamma))}{\Gamma(\pi^+ \to \mu^+ \nu_\mu(\gamma))} = \left(\frac{g_e}{g_\mu}\right)^2 \left(\frac{m_e}{m_\mu}\right)^2 \frac{\left(1 - m_e^2/m_\mu^2\right)^2}{\left(1 - m_\mu^2/m_\pi^2\right)^2} \left(1 + \delta R_{\pi_{e2}}\right)$$

$$R^{\mathsf{calc}}_{\pi_{e2}} = egin{calc} (1.2352 \pm 0.0005) imes 10^{-4} \ (1.2354 \pm 0.0002) imes 10^{-4} \ (1.2352 \pm 0.0001) imes 10^{-4} \end{cases}$$

Marciano & Sirlin, [PRL 71, 3629 (1993)] Finkemeier, [Phys. Lett. B 387, 391 (1996)] Cirigliano & Rosel, [PRL 99, 231801 (2007)]

 $R_{\pi_{c2}}^{\exp} = (1.230 \pm 0.004) \times 10^{-4}$ Experiment World Average (Current PDG)

Our Goal:
$$\frac{\Delta R^{exp}}{R^{exp}} \le 5 \times 10^{-4}$$
 PDG: $\frac{\Delta R^{exp}}{R^{exp}} \sim 3.3 \times 10^{-3}$

Lepton Universality: W. Loinaz, et. al., Phys. Rev. D 65, 113004 (2004) [hep-ph/0403306]

 $\left(\frac{g_e}{g_u}\right) = 1.0021 \pm 0.0016$

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN

Introduction Physics Motivation

Lepton Universality

From Loinaz et al., PRD 70 (2004) 113004

m

$$\begin{array}{l} \Delta_{\ell\,\ell'} = \varepsilon_{\ell} - \varepsilon_{\ell'} \\ \text{where} \quad \frac{g_{\ell}}{g_{\ell'}} = 1 + \frac{\varepsilon_{\ell} - \varepsilon_{\ell'}}{2} \end{array}$$

Deviations from SM Prediction

A Branching Ratio that is different from the SM prediction could be caused by:

- lepton non-universality,
- charged Higgs particles in theories with more Higgs than SM,
- pseudoscalar leptoquarks in theories with dynamical symmetry breaking,
- vector leptoquarks in GUTs,
- SUSY partner particles appearing in loop diagrams,
- non-zero neutrino masses,
- Majorons.

Mass Limits on Leptoquark and Supersymmetric Particles

A measurable deviation in $R_{\pi_{e2}}$ from the SM prediction is clear evidence of physics beyond the SM, sensitive to mass scales of many TeV.

Particle		Current Bounds	Projected Mass Sensitivity
Charged Higgs Boson	m _H	> 2 TeV	> 6.9 TeV
Pseudoscalar Leptoquark	m_p	> 1.3 TeV	> 3.8 TeV
Vector Leptoquark	M_G	> 220 TeV	> 630 TeV

Following the calculations in Shanker, NP B204 (82) 375

PEN Experiment Previous Measurements

History of the Measurement

Anthony Palladino (UVa)

Ŵ

Paul Scherrer Institute Villigen, Aargau, Switzerland

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN 👔

PEN Detector

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN 👔

Beam Counter, Focusing Magnets, and Detectors

PEN Detector

The PEN Apparatus: 2008

 \circ stopped π^+ beam active target counter ∘ 240-det. pure Csl calo. central tracking digitized PMT signals • stable temp./humidity

The PEN Apparatus: 2008

The PEN Apparatus: 2008 Novel, low cost, four-piece, Wedged Degrader. (UZh: P. Robmann)

Pros:

• x,y position sensitivity of beam π^+

Cons due to thicker degrader (13mm as opposed to 5mm):

- higher beam momentum required \Rightarrow more nuclear reactions in target.
- more material increases multiple scattering $\Rightarrow \pi$ position resolution suffers.

The PEN Apparatus: 2008

PEN Detector

Acqiris Digitizer

Acqiris High Speed 10-bit PXI/CompactPCI Digitizer, Model DC282 4 Channels, each with 2 GS/s

Digitized PMT waveforms from three beamline detectors:

- Upstream Beam Counter
- Active Degrader
- Active Target

Target Waveform Analysis

- Calibrate target energy to monoenergetic muon.
- Provide cuts, useful for distinguishing the various processes.

Pulse Shaping

Developed an iterative program to create a digital adaptive filter.

Input:

- Averaged system response waveform array, w_i
- Desired waveform array, *w̃_i*

Output:

 Shaping array ("Filter"), s_i

Pulse Shaping: $\tilde{w}_i =$

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN

Pulse Shaping

- Filtering (Shaping) isolates the monoenergetic muon for energy calibration.
- ★ A. Palladino, A. van der Schaaf, D. Počanić, "Reconstructing Detector Waveforms with Overlapping Pulses", to be submitted 2011.

Target Waveform Fit Parameters

Pulse	Position in time	Amplitude
π^+	Known (from Degrader)	Known (from TOF and $E_{B0} + \sum E_{deg}$)
	$\sigma\sim$ 65 ps	$\sigma\sim$ 716 keV (5.5%)
μ^+	Unknown	Known (monoenergetic)
		$\sigma\sim$ 200 keV (4.8%)
e ⁺	Known (from Plastic Hod.)	Known (from tracking)
	$\sigma\sim$ 492 ps	$\sigma\sim$ 878 keV (29.2%)

$\pi^+ ightarrow \mu^+ ightarrow e^+$ Event Fit

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN

Waveform Fitting

Modified
$$\chi^2$$
 Function:

$$\chi^2 = \frac{1}{n_{\text{d.o.f.}}} \sum_{i=1}^n \left(\frac{\tilde{w}_i^{\text{Fit}} - \tilde{w}_i}{\sigma_{\tilde{w}}} \right)^2 + \lambda_1 \left(\frac{E_{\pi^+}^{\text{Fit}} - E_{\pi^+}^{\text{Pred}}}{\sigma_{E_{\pi^+}}} \right)^2 + \lambda_2 \left(\frac{E_{e^+}^{\text{Fit}} - E_{e^+}^{\text{Pred}}}{\sigma_{E_{e^+}}} \right)^2$$

Anthony Palladino (UVa). 🧰 Investigating Lepton Universality with PEN

06 Dec '11 27 / 37

Waveform Fitting

Modified
$$\chi^2$$
 Function:

$$\chi^2 = \frac{1}{n_{\text{d.o.f.}}} \sum_{i=1}^n \left(\frac{\tilde{w}_i^{\text{Fit}} - \tilde{w}_i}{\sigma_{\tilde{w}}} \right)^2 + \lambda_1 \left(\frac{E_{\pi^+}^{\text{Fit}} - E_{\pi^+}^{\text{Pred}}}{\sigma_{E_{\pi^+}}} \right)^2 + \lambda_2 \left(\frac{E_{e^+}^{\text{Fit}} - E_{e^+}^{\text{Pred}}}{\sigma_{E_{e^+}}} \right)^2$$

Anthony Palladino (UVa). Investigating Lepton Universality with PEN

Waveform Fitting Results

PEN Data Analysis

Strategy:

Determine the most likely value of the $\pi^+ \rightarrow e^+ \nu_e$ branching ratio using a Maximum Likelihood Analysis.

Benefits:

- Provides a unique, unbiased, minimum variance estimate (for a large enough sample).
- Practical, tractable approach via product PDFs
- Use as much data as possible to determine $R_{\pi_{e^2}}$; loose cuts.

Complication:

• Critical dependence on PDF

Maximum Likelihood Analysis

One likelihood function encompassing many observables and processes.

$$\mathcal{L}\left(\overrightarrow{x}_{e} ; f_{m}\right) = \prod_{e=1}^{\mathcal{N}} \left[\sum_{m=1}^{M} f_{m} P_{m}(\overrightarrow{x}_{e})\right]$$

where $\ensuremath{\mathcal{N}}$ is the number of events, and

(\overrightarrow{x}_e) are the observables

- Time between π^+ and e^+
- Total Positron Energy
- "Probability" of Pile-up

"
$${\mathcal{P}}$$
" pile-up $= \ln \left[\sum_{k=1}^{\ell} e^{-|dt_k|/ au_\mu}
ight]$

• Pion Decay Vertex

• etc.

Anthony Palladino (UVa)

Investigating Lepton Universality with PEN

(f_m) fraction of process m

•
$$f_{\pi_{\mathrm{e}2}},~\pi^+
ightarrow e^+$$

•
$$f_{\pi_{\mu 2}}, \ \pi^+
ightarrow \mu^+
ightarrow e^+$$

- f_{Acc} , Accidentals / Pile-up
- *f*_{DIF}, Pion Decays-in-flight
- *f*_{Had}, Proton
- *f*_?, etc.

Analysis Maximum Likelihood Analysis

Model: Probability Distribution Functions, P_m $\mathcal{L}\left(\overrightarrow{E}_{\text{Total}}; f_{\pi_{e2}}, f_{\pi_{\mu2}}, f_{\text{Acc}}, f_{\text{DIF}}, f_{\text{Had}}\right)$

π_{µ2}

- π_{e2}
- Accidental Coincidence
- π Decay-in-flight
- Hadronic (proton)

$$\chi^2/N_{
m dof} = 3.8$$

Energy Histograms stacked on top of each other

Í

Model: Probability Distribution Functions, Pm

$$\mathcal{L}\left(\overrightarrow{\Delta t} ; f_{\pi_{e2}}, f_{\pi_{\mu 2}}, f_{Acc}, f_{DIF}, f_{Had}\right)$$

- π_{µ2}
- π_{e2}
- Accidental Coincidence
- π Decay-in-flight
- Hadronic (proton)

$$\chi^2/N_{
m dof} = 1.3$$

Analysis Maximum Likelihood Analysis

Practicality: Negative Log Likelihood

$$\ell = -{
m ln} {\cal L}$$
 ${\cal L} = e^{-\ell}$ $N_{
m p2e}$ vs. $N_{
m michel}$

C++ code written specifically for this analysis.

Maximum Likelihood Analysis

- Framework complete
 - Flexible: can add/remove processes and observables
 - Error analysis correct (weighted events)
- Errors comparable to χ^2 fit

$$\begin{array}{l} \circ \ \ \frac{\Delta R}{R} = 0.16\% \ (\text{statistical}) \\ \circ \ \ \frac{\Delta R}{R} \sim 2\% \ (\text{systematic}) \rightarrow \ \frac{\Delta R}{R} < 0.02\% \end{array}$$

Conclusions

Conclusion

Year 2006 (Beam Development Phase):

• Detector Refurbishment (Same detector from PiBeta Experiment).

Year 2007 (Experiment Development Phase):

• More refurbishments / Many new components and upgrades.

Year 2008 (1st Production Phase):

- Use of wedged degrader for π tracking.
- Recorded $\sim 5 imes 10^6 \ \pi^+
 ightarrow e^+
 u_{
 m e}$ decays

Years 2009 and 2010 (2nd and 3rd Production Phases):

- Use of mini-TPC for improved π tracking.
- Recorded $\sim 20 imes 10^6$ more $\pi^+
 ightarrow e^+
 u_e$ decays

Year 2011 (Data Analysis Phase):

- Finalized target waveform analysis
- Developed Maximum Likelihood analysis framework

Conclusions

PEN Experiment Collaboration Members:

L.P. Alonzi,^a V. A. Baranov,^c W. Bertl,^b M. Bychkov,^a Yu.M. Bystritsky,^c E. Frlež,^a V. Kalinnikov,^c N.V. Khomutov,^c A.S. Korenchenko,^c S.M. Korenchenko,^c M. Korolija,^f T. Kozlowski,^d N.P. Kravchuk,^c N.A. Kuchinsky,^c M.C. Lehman,^a D. Mekterović,^f D. Mzhavia,^{c,e} A. Palladino,^a D. Počanić,^{a*} P. Robmann,^g O.A. Rondon-Aramayo,^a A.M. Rozhdestvensky,^c T. Sakhelashvili,^b V.V. Sidorkin,^c U. Straumann,^g I. Supek,^f Z. Tsamalaidze,^e A. van der Schaaf,^{g*} E.P. Velicheva,^c V.V. Volnykh,^c

^aDept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USA ^bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^cJoint Institute for Nuclear Research, RU-141980 Dubna, Russia ^dInstitute for Nuclear Studies, PL-05-400 Swierk, Poland ^eIHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia ^fRudjer Bošković Institute, HR-10000 Zagreb, Croatia ^gPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

 $\mathsf{blue}=\mathsf{Ph}.\mathsf{D}.\ \mathsf{Candidate}$

 $\star = \mathsf{Spokesperson}$

PEN Web page: http://pen.phys.virginia.edu

