PEN Experiment: A Sensitive Search for Non-(V-A) Weak Processes

Dinko Počanić (for the PEN Collaboration)

University of Virginia

PANIC 2008, Eilat, Israel 9-14 Nov 2008

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 1 / 19

- 31

(日) (周) (三) (三)

Outline

Outline

Motivation

The PIBETA–PEN program SM calculations; mass limits Lepton universality

Overview of the PEN Experiment The apparatus and method

Brief look at 2007 and 2008 results Sample waveforms and histograms

Summary: present status, plans

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 2 / 19

(日) (周) (三) (三)

The PIBETA–PEN Program of Measurements

Perform precision checks of Standard Model and QCD predictions: _________1st phase: The **PIBETA** experiment ______

 $\blacktriangleright \pi^+ \to \pi^0 e^+ \nu_e$

o SM checks related to CKM unitarity

► $\pi^+ \rightarrow e^+ \nu_e \gamma$ (or $e^+ e^-$) • F_A/F_V , π polarizability (χ PT prediction) • tensor coupling besides V - A (?)

► $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$) o departures from V – A in \mathcal{L}_{weak}

2nd phase: The PEN experiment

► $\pi^+ \rightarrow e^+ \nu_e$

 $\circ \mathbf{e}$ - μ universality

o pseudoscalar coupling besides $\mathbf{V} - \mathbf{A}$

o ν sector anomalies, Majoron searches, m_{h+} , PS I-q's, V I-q's, . . .

D. Počanić (UVa)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Known and Measured Pion and Muon Decays

Decay	BR	
$\pi^{+} \rightarrow \mu^{+}\nu \mu^{+}\nu\gamma e^{+}\nu \mu^{+}\nu\gamma e^{+}\nu\gamma e^{+}\nu\gamma e^{+}\nu e^{+}\nu e^{+}e^{-}$	$\begin{array}{c} 0.9998770 (4) \\ 2.00 (25) \times 10^{-4} \\ 1.230 (4) \times 10^{-4} \\ 1.61 (23) \times 10^{-7} \\ 1.025 (34) \times 10^{-8} \\ 3.2 (5) \times 10^{-9} \end{array}$	$ \begin{array}{c} (\pi_{\mu 2}) \\ (\pi_{\mu 2 \gamma}) \\ (\pi_{e 2}) & \checkmark \\ (\pi_{e 2 \gamma}) & \checkmark \\ (\pi_{e 3}, \pi_{\beta}) & \checkmark \\ (\pi_{e 2 e e}) \end{array} $
$\begin{array}{rcc} \pi^{0} \rightarrow & \gamma\gamma \\ e^{+}e^{-}\gamma \\ e^{+}e^{-}e^{+}e^{-} \\ e^{+}e^{-} \end{array}$	$\begin{array}{c} 0.98798(32)\\ 1.198(32)\times 10^{-2}\\ 3.14(30)\times 10^{-5}\\ 6.2(5)\times 10^{-8} \end{array}$	
$\mu^+ ightarrow {e^+ u ar u} e^+ u ar u \gamma e^+ u ar u e^+ e^-$	~ 1.0 0.014 (4) \checkmark 3.4 (4) $\times 10^{-5}$	

D. Počanić (UVa)

PANIC: 13 Nov '08 4 / 19

$\pi ightarrow {f e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations:

$$B_{\mathsf{calc}} = rac{ \Gamma(\pi o e ar{
u}(\gamma)) }{ \Gamma(\pi o \mu ar{
u}(\gamma))}_{\mathsf{calc}} =$$

 $\begin{cases} 1.2352\,(5)\times10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2356\,(1)\times10^{-4} & \text{Decker and Finkemeier, [NP B$ **438** $(1995) 17]} \\ 1.2352\,(1)\times10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B}\simeq 5 imes 10^{-4}$$
 .

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 5 / 19

イロト 不得 トイヨト イヨト 二日

$\pi ightarrow {f e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations:

$$B_{\mathsf{calc}} = rac{ \Gamma(\pi o e ar{
u}(\gamma)) }{ \Gamma(\pi o \mu ar{
u}(\gamma))}_{\mathsf{calc}} =$$

 $\begin{cases} 1.2352 (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2356 (1) \times 10^{-4} & \text{Decker and Finkemeier, [NP B$ **438** $(1995) 17]} \\ 1.2352 (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B}\simeq 5 imes 10^{-4}$$
 .

D. Počanić (UVa)

PEN Experiment

$\pi ightarrow {f e} u$ Decay: SM Calculations; Measurements

Modern theoretical calculations:

$$B_{\mathsf{calc}} = rac{\Gamma(\pi o e ar{
u}(\gamma))}{\Gamma(\pi o \mu ar{
u}(\gamma))}_{\mathsf{calc}} =$$

 $\begin{cases} 1.2352 (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2356 (1) \times 10^{-4} & \text{Decker and Finkemeier, [NP B$ **438** $(1995) 17]} \\ 1.2352 (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B} \simeq 5 \times 10^{-4}$$
.

D. Počanić (UVa)

PEN Experiment

イロト 不得下 イヨト イヨト 二日

π_{e2} Decay and the SM

 $B(\pi \to e\nu) = \Gamma(\pi_{e2})/\Gamma(\pi_{\mu 2})$ given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate can be caused by:

- (a) charged Higgs in theories with richer Higgs sector than SM,
- (b) PS leptoquarks in theories with dynamical symmetry breaking,
- (c) V leptoquarks in Pati-Salam type GUT's,
- (d) loop diagrams involving certain SUSY partner particles,
- (e) non-zero neutrino masses (and mixing).

Proc's. (a)–(d) \Rightarrow PS currents. Most general 4-fermion π_{e2} amplitude:

$$\begin{aligned} \frac{\mathcal{G}_{\mathcal{F}}}{\sqrt{2}} \Big[\left(\bar{d} \gamma_{\mu} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{\mu} \gamma^{5} (1 - \gamma^{5}) e \right) \mathbf{f}_{\mathsf{AL}}^{e} \\ &+ \mathbf{f}_{\mathsf{PL}}^{e} \left(\bar{d} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{5} (1 - \gamma^{5}) e \right) \Big] + \mathsf{r.h.} \ \nu \ \mathsf{term} \end{aligned}$$

In the SM: $f_{AL}^{\ell} = 1$, while $f_{xR}^{\ell} = f_{Px}^{\ell} = 0$, with $\ell = e, \mu$.

D. Počanić (UVa)

The f_{PL}^e and Mass Bounds

Allowing for pseudoscalar coupling [Shanker, NP B204 (82) 375]:

$$B_{\pi e2} = B_{\rm SM} \left(1 + \frac{2m_{\pi}a_{\rm P}}{m_ea_{\rm A}} f_{\rm PL}^e \right) / \left(1 + \frac{2m_{\pi}a_{\rm P}}{m_{\mu}a_{\rm A}} f_{\rm PL}^{\mu} \right) \,,$$

where 2nd term in denominator is negligible because $f_{PL}^e \simeq f_{PL}^{\mu}$, while

$$rac{a_{
m P}}{a_{
m A}}\simeq rac{m_\pi}{m_u+m_d}\simeq 14$$
 .

Therefore

$$\left(B_{\pi e 2}^{\rm obs} - B_{\pi e 2}^{\rm SM}\right) / B_{\pi e 2}^{\rm SM} = \frac{\Delta B}{B^{\rm SM}} \simeq \frac{2m_{\pi}a_{\rm P}}{m_{\rm e}a_{\rm A}} f_{\rm PL}^{\rm e} \simeq 7700 f_{\rm PL}^{\rm e} \ !$$

Tgt accuracy of the PEN experiment is $\Delta B/B\simeq 5\times 10^{-4},$ which gives a 1σ sensitivity of

$$\delta f_{\mathsf{PL}}^{e} \simeq 6.5 imes 10^{-8}$$
 .

We can use this sensitivity to get estimates of the mass reach of PEN.

D. Počanić (UVa)

PEN Experiment

Mass Bounds from PEN Goal Accuracy

(a) Charged Higgs, $m_{\rm H+}$ [Shanker, NP B204 (82) 375] Given a mixing angle suppression $S \approx 10^{-2}$, we get

$$f_{\rm PL}^e pprox S rac{m_t m_ au}{m_{\rm H+}^2}$$
 yielding $m_{\rm H+} > 6.9 \, {
m TeV}$.

(b) Pseudoscalar leptoquarks, m_P

Given an estimated effective Yukawa coupling of $y \simeq 1/250$, we can find $m_{\rm P}$, mass of the color-triplet PS *I-q*:

$$f_{\mathsf{PL}}^e \approx rac{\sqrt{2}}{G_F} rac{y^2}{2m_{\mathsf{P}}^2} \qquad ext{yielding} \qquad m_{\mathsf{P}} > 3.8 \, \mathrm{TeV} \, .$$

(c) Vector leptoquarks, M_G

Following Shanker who assumes gauge coupling $g \simeq g_{SU(2)}$, we get:

$$f_{\rm PL}^e \approx \frac{4M_W^2}{M_G^2}$$
 yielding $M_G > 630 \,{\rm TeV}$.

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 8 / 19

Lepton Universality (and Neutrinos)

From

$$\begin{split} R_{e/\mu} &= \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} = \frac{g_e^2}{g_\mu^2} \frac{m_e^2}{m_\mu^2} \frac{(1 - m_e^2/m_\mu^2)^2}{(1 - m_\mu^2/m_\pi^2)^2} \left(1 + \delta R_{e/\mu}\right) \\ R_{\tau/\pi} &= \frac{\Gamma(\tau \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} = \frac{g_\tau^2}{g_\mu^2} \frac{m_\tau^3}{2m_\mu^2 m_\pi} \frac{(1 - m_\pi^2/m_\tau^2)^2}{(1 - m_\mu^2/m_\pi^2)^2} \left(1 + \delta R_{\tau/\pi}\right) \end{split}$$

one can evaluate

$$\left(rac{g_e}{g_\mu}
ight)_{\!\!\!\!\pi} = 1.0021 \pm 0.0016 \quad {
m and} \quad \left(rac{g_ au}{g_\mu}
ight)_{\!\!\!\pi au} = 1.0030 \pm 0.0034 \,.$$

For comparison

$$\left(rac{g_e}{g_\mu}
ight)_W = 0.999 \pm 0.011 \quad ext{and} \quad \left(rac{g_ au}{g_e}
ight)_W = 1.029 \pm 0.014 \,.$$

[Violation of LU at presently allowed level would account for "NuTeV anomaly."]

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 9 / 19

Motivation Lepton universality

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 10 / 19

The PIBETA/PEN Apparatus

stopped π⁺ beam
active target counter
240-det. Csl(p) calo.
central tracking
digitized PMT signals
stable temp./humidity

The PIBETA/PEN Apparatus

stopped π⁺ beam
active target counter
240-det. Csl(p) calo.
central tracking
digitized PMT signals
stable temp./humidity

The PIBETA/PEN Apparatus

stopped π⁺ beam
active target counter
240-det. Csl(p) calo.
central tracking
digitized PMT signals
stable temp./humidity

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 11 / 19

Central Detectors: 2007 Engineering Run

Wedged Degrader: 2008 Run

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 13 / 19

3

Timing in the central beam detectors

PANIC: 13 Nov '08 14 / 19

80 100 12 DEG-Csl TDC (ns)

120

HT Trigger

68 MeV/c π+

HT Trigger

68 MeV/c π⁺

60

150

200

DEG-Csl TDC (ns)

100

50

20

40

Sample waveforms 2007:

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 15 / 19

D. Počanić (UVa)

PEN Experiment

PANIC: 13 Nov '08 16 / 19

D. Počanić (UVa)

PEN Experiment

17 / 19 PANIC: 13 Nov '08

PEN Experiment: Present Status

- \blacktriangleright Stopped beam at $\sim 15,000\,\pi^+/{\rm sec.}$
- Pion decays detected in a 250 ns wide gate.
- Position sensitive two-piece wedged active degrader detector.
- Digitized signals of beam counters: forward (B0), active degrader (DEG), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.
- ► Total pions stopped in 2007 and 2008 runs: $> 8 \times 10^{10}$. To date $> 4.7 \times 10^6 \ \pi \rightarrow e\nu$ decays recorded, corresponding to $(\delta B/B)_{\text{stat}} < 5 \times 10^{-4}$.
- Detailed data analysis under way in preparation for a 2009 run, planned to complete the required event statistics. Improved beam tracking with a miniTPC under design.

Web page: http://pen.phys.virginia.edu

D. Počanić (UVa)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Experiment R-05-01 (PEN) collaboration members:

L. P. Alonzi,^a V. A. Baranov,^c W. Bertl,^b M. Bychkov,^a Yu.M. Bystritsky,^c E. Frlež,^a N.V. Khomutov,^c A.S. Korenchenko,^c S.M. Korenchenko,^c M. Korolija,^f T. Kozlowski,^d N.P. Kravchuk,^c N.A. Kuchinsky,^c D. Mekterović,^f D. Mzhavia,^{c,e} A. Palladino,^a D. Počanić,^{a*} P. Robmann,^g A.M. Rozhdestvensky,^c V.V. Sidorkin,^c U. Straumann,^g I. Supek,^f Z. Tsamalaidze,^e A. van der Schaaf,^{g*} E.P. Velicheva,^c and V.V. Volnykh^c

^aDept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USA ^bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ^cJoint Institute for Nuclear Research, RU-141980 Dubna, Russia ^dInstitute for Nuclear Studies, PL-05-400 Swierk, Poland ^eIHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia ^fRudjer Bošković Institute, HR-10000 Zagreb, Croatia ^gPhysik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

D. Počanić (UVa)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙