Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Precise Measurement of the $\pi^+ \rightarrow e^+ \nu$ Branching Ratio

E. Frlež (for the PEN Collaboration)

Department of Physics University of Virginia

New Trends in High Energy Physics Yalta, Crimea, Sept. 27 - Oct. 4, 2008

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Outline

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Physics Motivation

PIBETA Experimental Program

- $\pi \rightarrow e\nu$: Theoretical Status
- $\pi \rightarrow e\nu$: Experimental Status

Experimental Apparatus

PEN Detector Central Detector Region Waveform Digitizer

Data & Analysis

ADC/TDC/DIG Spectra Waveform Analysis ANN Analysis

Summary & Future Plans PEN 2007-2009

PSI Experiment R-05-01 (PEN) collaboration members:

L. P. Alonzi,^a V. A. Baranov,^c W. Bertl,^b M. Bychkov,^a Yu.M. Bystritsky,^c E. Frlež,^a N.V. Khomutov,^c A.S. Korenchenko,^c S.M. Korenchenko,^c M. Korolija,^f T. Kozlowski,^d N.P. Kravchuk,^c N.A. Kuchinsky,^c D. Mekterović,^f D. Mzhavia,^{c,e} A. Palladino,^a D. Počanić,^a* P. Robmann,^g O.A. Rondon-Aramayo,^a A.M. Rozhdestvensky,^c T. Sakhelashvili,^g V.V. Sidorkin,^c U. Straumann,^g I. Supek,^f Z. Tsamalaidze,^e A. van der Schaaf,^g* E.P. Velicheva,^c and V.V. Volnykh^c

^a Dept of Physics, Univ of Virginia, Charlottesville, VA 22904-4714, USA
 ^b Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
 ^c Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
 ^d Institute for Nuclear Studies, PL-05-400 Swierk, Poland
 ^e IHEP, Tbilisi, State University, GUS-380086 Tbilisi, Georgia
 ^f Rudjer Bošković Institute, HR-10000 Zagreb, Croatia
 ^g Physik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

Outline	Physics Motivation	Experimental Apparatus		
	0	00		
	000	00		
	00	0		

Data & Analysis

Summary & Future Plans

PEN follows the PIBETA experiment

PIBETA program (precision checks of SM):

Outline	Physics Motivation
	0
	000
	00

Data & Analysis

Summary & Future Plans

イロト (得) (日) (日) (日) (日)

PEN follows the PIBETA experiment

PIBETA program (precision checks of SM):

- ► $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ —main goal
 - SM checks related to CKM unitarity

Outline	Physics Motivation	Experimental A
	0	00
	000	00
	00	0

Data & Analysis

Summary & Future Plans

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

PEN follows the PIBETA experiment

PIBETA program (precision checks of SM):

► $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ —main goal

o SM checks related to CKM unitarity

- ▶ $\pi^+ \rightarrow \mathbf{e}^+ \nu_{\mathbf{e}} \gamma$ (or $\mathbf{e}^+ \mathbf{e}^-$)
 - \circ *F_A*/*F_V*, π polarizability (χ PT prediction)

 \circ tensor coupling besides *V* – *A* (?)

Outline	Physics Motivation	Experimental Apparatus	
	0	00	
	000	00	
	00	0	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

PEN follows the PIBETA experiment

PIBETA program (precision checks of SM):

- π⁺ → π⁰e⁺ν_e—main goal
 SM checks related to CKM unitarity
- $\pi^+ \rightarrow e^+ \nu_e \gamma (\text{or } e^+ e^-)$
 - F_A/F_V , π polarizability (χ PT prediction) • tensor coupling besides V - A (?)
- ► $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$ (or $e^+ e^-$) \circ departures from V - A in $\mathcal{L}_{\text{weak}}$

Outline	Physics Motivation	Experimental Apparatus		
	0	00		
	000	00		
	00	0		

Data & Analysis 0000 00 000 Summary & Future Plans

PEN follows the PIBETA experiment

PIBETA program (precision checks of SM):

► $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ —main goal

SM checks related to CKM unitarity

- ► $\pi^+ \rightarrow \mathbf{e}^+ \nu_{\mathbf{e}} \gamma$ (or $\mathbf{e}^+ \mathbf{e}^-$)
 - \circ *F_A*/*F_V*, π polarizability (χ PT prediction)
 - \circ tensor coupling besides *V A* (?)

▶
$$\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$$
 (or $e^+ e^-$)
 \circ departures from V – A in $\mathcal{L}_{\text{weak}}$

 \Rightarrow The **PEN** experiment:

- ► $\pi^+ \rightarrow e^+ \nu_e$
 - $\circ e$ - μ universality
 - \circ pseudoscalar coupling besides V A
 - $\circ \nu$ -sector anomalies, Majoron searches, m_{h+} , PS *I-q*'s, V *I-q*'s, ...

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi
ightarrow e
u$ decay: SM predictions; measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} =$

 $\begin{cases} 1.2352~(5)\times10^{-4} & \text{Marciano and Sirlin, [PRL 71 (1993) 3629]} \\ 1.2356~(1)\times10^{-4} & \text{Decker and Finkemeier, [NP B 438 (1995) 17]} \\ 1.2352~(1)\times10^{-4} & \text{Cirigliano and Rosell, [PRL 99, 231801 (2007)]} \end{cases}$

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi
ightarrow {
m e}
u$ decay: SM predictions; measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} =$

 $\begin{cases} 1.2352 \, (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2356 \, (1) \times 10^{-4} & \text{Decker and Finkemeier, [NP B$ **438** $(1995) 17]} \\ 1.2352 \, (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))_{exp}} = (1.230 \pm 0.004) \times 10^{-4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi
ightarrow {
m e}
u$ decay: SM predictions; measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} =$

 $\begin{cases} 1.2352 \, (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2356 \, (1) \times 10^{-4} & \text{Decker and Finkemeier, [NP B$ **438** $(1995) 17]} \\ 1.2352 \, (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$\frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))} = (1.230 \pm 0.004) \times 10^{-4}$$
PEN goal: $\frac{\delta B}{B} \simeq 5 \times 10^{-4}$.

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $B_{e/\mu}$ is given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate primarily caused by new pseudoscalar interactions (mass scale Λ_{eP}):

$$\Delta B_{e/\mu} = 1 - \frac{B_{e/\mu}^{\rm new}}{B_{e/\mu}^{\rm SM}} \sim \frac{\sqrt{2}}{G_{\mu}} \frac{m_{\pi}^2}{m_e(m_u + m_d)} \frac{1}{\Lambda_{\rm eP}^2} \sim \left(\frac{1 {\rm TeV}^2}{\Lambda_{\rm eP}}\right) \times 10^3.$$

Thus $(\delta B/B)_{exp} = 10^{-4}$ probes $\Lambda_{eP} \sim 10^3\,\text{TeV!} \rightarrow \text{Limits}$ on:

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $B_{e/\mu}$ is given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate primarily caused by new pseudoscalar interactions (mass scale Λ_{eP}):

$$\Delta B_{e/\mu} = 1 - \frac{B_{e/\mu}^{\rm new}}{B_{e/\mu}^{\rm SM}} \sim \frac{\sqrt{2}}{G_{\mu}} \frac{m_{\pi}^2}{m_e(m_u + m_d)} \frac{1}{\Lambda_{eP}^2} \sim \left(\frac{1 {\rm TeV}^2}{\Lambda_{eP}}\right) \times 10^3.$$

Thus $(\delta \textit{B}/\textit{B})_{exp} = 10^{-4} \text{ probes } \Lambda_{eP} \sim 10^3 \, \text{TeV!} \rightarrow \text{Limits on:}$

 charged Higgs in theories with richer Higgs sector than SM,

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $B_{e/\mu}$ is given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate primarily caused by new pseudoscalar interactions (mass scale Λ_{eP}):

$$\Delta B_{e/\mu} = 1 - rac{B_{e/\mu}^{
m new}}{B_{e/\mu}^{
m SM}} \sim rac{\sqrt{2}}{G_\mu} rac{m_\pi^2}{m_e(m_u+m_d)} rac{1}{\Lambda_{
m eP}^2} \sim \left(rac{1{
m TeV}^2}{\Lambda_{
m eP}}
ight) imes 10^3.$$

Thus $(\delta \textbf{\textit{B}}/\textbf{\textit{B}})_{exp}=10^{-4} \text{ probes } \Lambda_{eP} \sim 10^3 \, \text{TeV!} \rightarrow \text{Limits on:}$

- charged Higgs in theories with richer Higgs sector than SM,
- R-parity violating SUSY; loop diagrams with certain SUSY partner particles,

・ロト ・日下・モート ・日下・ 日・ うへの

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $B_{e/\mu}$ is given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate primarily caused by new pseudoscalar interactions (mass scale Λ_{eP}):

$$\Delta B_{e/\mu} = 1 - rac{B_{e/\mu}^{
m new}}{B_{e/\mu}^{
m SM}} \sim rac{\sqrt{2}}{G_\mu} rac{m_\pi^2}{m_e(m_u+m_d)} rac{1}{\Lambda_{
m eP}^2} \sim \left(rac{1{
m TeV}^2}{\Lambda_{
m eP}}
ight) imes 10^3.$$

Thus $(\delta \textbf{\textit{B}}/\textbf{\textit{B}})_{exp}=10^{-4} \text{ probes } \Lambda_{eP} \sim 10^3 \, \text{TeV!} \rightarrow \text{Limits on:}$

- charged Higgs in theories with richer Higgs sector than SM,
- R-parity violating SUSY; loop diagrams with certain SUSY partner particles,
- PS and V leptoquarks in various theories with dynamical symmetry breaking,

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $B_{e/\mu}$ is given in SM to 10^{-4} accuracy; dominated by helicity suppression (V - A). Deviations from this rate primarily caused by new pseudoscalar interactions (mass scale Λ_{eP}):

$$\Delta B_{e/\mu} = 1 - rac{B_{e/\mu}^{
m new}}{B_{e/\mu}^{
m SM}} \sim rac{\sqrt{2}}{G_\mu} rac{m_\pi^2}{m_e(m_u+m_d)} rac{1}{\Lambda_{
m eP}^2} \sim \left(rac{1{
m TeV}^2}{\Lambda_{
m eP}}
ight) imes 10^3.$$

Thus $(\delta \textit{B}/\textit{B})_{exp} = 10^{-4} \text{ probes } \Lambda_{eP} \sim 10^3 \, \text{TeV!} \rightarrow \text{Limits on:}$

- charged Higgs in theories with richer Higgs sector than SM,
- R-parity violating SUSY; loop diagrams with certain SUSY partner particles,
- PS and V leptoquarks in various theories with dynamical symmetry breaking,
- ▶ non-zero m_{ν} and mixing; sterile ν 's; Majorans.

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Pla
	00	00	0000	0
	000	00	00	
	00	0	000	

Experimental Constraints on Lepton Non-Universality

Lepton coupling constants $g_{l=e,\mu,\tau}$: $g_l = g_l(1 + \epsilon_l), \Delta_{ij} = \epsilon_i - \epsilon_j$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Experimental Constraints on Lepton Non-Universality

Lepton coupling constants $g_{l=e,\mu,\tau}$: $g_l = g_l(1 + \epsilon_l), \Delta_{ij} = \epsilon_i - \epsilon_j$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	•0	0	000	

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	•0	0	000	

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

◆□▶ ◆□▶ ◆□▶ ◆□▶

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	•0	0	000

Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

• PSI cyclotron, 78 MeV/c π^+ beam

(日) (四) (日) (日)

Outline	Physics Motivation	Experimental Apparatus
	00	00
	000	00
	•0	0

Data & Analysis

Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

- PSI cyclotron, 78 MeV/c π^+ beam
- Segmented BGO calorimeter:

132 crystals, ϕ 55 mm, l=300 mm

◆□▶ ◆□▶ ◆□▶ ◆□▶

-10

Outline	Physics Motivation	Exper
	00	00
	000	00
	•0	0

Data & Analysis 0000 00 000 Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

- PSI cyclotron, 78 MeV/c π^+ beam
- Segmented BGO calorimeter: 132 crystals, φ 55 mm, I=300 mm
- Good energy (1.7%) and timing rms (1 ns)

(日) (四) (日) (日)

Outline	Physics Motivation	Exp
	00	00
	000	00
	•0	0

Data & Analysis

Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

- PSI cyclotron, 78 MeV/c π^+ beam
- Segmented BGO calorimeter: 132 crystals, φ 55 mm, I=300 mm
- Good energy (1.7%) and timing rms (1 ns)

(日) (四) (日) (日)

• large solid angle ($\sim 4\pi$) coverage

Outline	Physics Motivation	E
	00	0
	000	0
	•0	0

Data & Analysis

Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

- PSI cyclotron, 78 MeV/c π^+ beam
- Segmented BGO calorimeter: 132 crystals, φ 55 mm, I=300 mm
- Good energy (1.7%) and timing rms (1 ns)

(日) (四) (日) (日)

- large solid angle (\sim 4 π) coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail simulated, not measured

Outline	Physics Motivation	E
	00	(
	000	(
	•0	0

Data & Analysis 0000 00 000 Summary & Future Plans

PSI $\pi \rightarrow e\nu$ **Experiment: Czapek et al. 1993**

- PSI cyclotron, 78 MeV/c π^+ beam
- Segmented BGO calorimeter: 132 crystals, φ 55 mm, I=300 mm
- Good energy (1.7%) and timing rms (1 ns)

(日) (四) (日) (日)

- large solid angle ($\sim 4\pi$) coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail simulated, not measured
- PRL93: $(1.235 \pm 0.004 \pm 0.004) \cdot 10^{-4}$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>
◆□>

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Pla
	00	00	0000	0
	000	00	00	
	0	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

(=) (

• NaI(TI) "TINA": *φ* 460 mm, I=510 mm

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

「日本」 (四本) (日本) (日本)

- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

・ロット (雪) ((目) ((日)) (日)

- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

(日) (四) (日) (日) (日)

- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail measured

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plan
	00	00	0000	0
	000	00	00	
	0.	0	000	

 \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam

- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plan
	00	00	0000	0
	000	00	00	
	0.	0	000	

- \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam
- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$
- PLR93: $(1.2265 \pm 0.0034 \pm 0.0044) \cdot 10^{-4}$
| Outline | Physics Motivation | Experimental Apparatus | Data & Analysis | Summary & Future Plan |
|---------|--------------------|------------------------|-----------------|-----------------------|
| | 00 | 00 | 0000 | 0 |
| | 000 | 00 | 00 | |
| | 0. | 0 | 000 | |

- \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam
- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\mathbf e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$
- PLR93: $(1.2265 \pm 0.0034 \pm 0.0044) \cdot 10^{-4}$
- TRIUMF E1072 experiment proposed 2006

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plan
	00	00	0000	0
	000	00	00	
	0.	0	000	

- \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam
- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\it e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$
- PLR93: $(1.2265 \pm 0.0034 \pm 0.0044) \cdot 10^{-4}$
- TRIUMF E1072 experiment proposed 2006 • better tracking, larger solid angle (25%)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	0.	0	000	

- \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam
- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\mathbf e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$
- PLR93: $(1.2265 \pm 0.0034 \pm 0.0044) \cdot 10^{-4}$
- TRIUMF E1072 experiment proposed 2006 • better tracking, larger solid angle (25%)

Goal:
$$\frac{\delta B}{B} \simeq 1 \times 10^{-3}$$

・ロット (雪) (日) (日) 日

• Engineering runs Aug.-Oct. 2008

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plan
	00	00	0000	0
	000	00	00	
	0.	0	000	

- \bullet TRIUMF cyclotron, 83 MeV/c π^+ beam
- NaI(TI) "TINA": *φ* 460 mm, I=510 mm
- Good energy and timing resolution
- small (2.9%) solid angle coverage
- $\pi^+ \rightarrow {\rm e}^+ \nu$ tail measured
- PRD86: $(1.218 \pm 0.014) \cdot 10^{-4}$
- PLR93: $(1.2265 \pm 0.0034 \pm 0.0044) \cdot 10^{-4}$
- TRIUMF E1072 experiment proposed 2006 • better tracking, larger solid angle (25%)

$$\text{Goal:} \frac{\delta B}{B} \simeq 1 \times 10^{-3}$$

・ロット (雪) (日) (日) 日

- \circ Engineering runs Aug.-Oct. 2008
- Data taking 2009-10

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	•0	0000	0
	000	00	00	
	00	0	000	

The PIBETA/PEN Apparatus: 1998-2008

Outline	Physics Motivation
	00
	000
	00

Experimental	Apparatus
0	
00	

Summary & Future Plans

The PIBETA/PEN Apparatus: 1998-2008

<ロト (四) (三) (三) (三) (三)

Outline	Physics Motivation	
	00	
	000	
	00	

Experimental	Apparatus
•0	
00	

Summary & Future Plans

The PIBETA/PEN Apparatus: 1998-2008

<ロト (四) (三) (三) (三) (三)

Outline	Physics Motivation		
	00		
	000		
	00		

Experimental Appara	tus
•0	
00	

Summary & Future Plans

The PIBETA/PEN Apparatus: 1998-2008

그에 소리에 제공에 소문에 소문에 다

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	0	0000	0
	000	00	00	
	00	0	000	

The PIBETA/PEN Apparatus: Basic Subsystems

- \circ stopped π^+ beam
- o active tracking degrader
- active target counter
- o 240-det. Csl(p) calo.
- central tracking
- digitized PMT signals
- stable temp./humidity

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	0	0000	0
	000	00	00	
	00	0	000	

The PIBETA/PEN Apparatus: Basic Subsystems

(日) (四) (日) (日) (日) (日)

- \circ stopped π^+ beam
- o active tracking degrader
- o active target counter
- o 240-det. CsI(p) calo.
- central tracking
- digitized PMT signals
- stable temp./humidity

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Pl
	00	0	0000	0
	000	00	00	
	00	0	000	

The PIBETA/PEN Apparatus: Basic Subsystems

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	•0	00	
	00	0	000	

Central detector region for the 2007/2008 run

◆□▶ ◆圖▶ ◆国▶ ◆国▶ ● ● ● ●

Outline	Physics Motivation
	00
	000
	00

Experimental	Apparatus
00	
00	

Summary & Future Plans

4-wedge Tracking Active Degrader 2008

-2

Outline	Physics Motivation
	00
	000
	00

Experimental Apparatus	s
00	
0.	

Summary & Future Plans

4-wedge Tracking Active Degrader 2008

• AD π^+ + MWPC e^+ Tracking = e^+ pathlength in Target=

suppresion of In-Flight Decays

- BC-408 Scintillator
- 0.9 ns Rise Time
- 2.1 ns Decay Time
- o 160 Phel/MeV
- two x and two y Wedges
- 3 cm Upstream of Target

Outline	Physics Motivation
	00
	000
	00

Experimental Apparatus

Data & Analysis

Summary & Future Plans

<ロ> (四) (四) (三) (三) (三) (三)

Acqiris Digitizer for Target Counters

Outline	Physics Motivation
	00
	000
	00

Experimental Apparatus

Data & Analysis

Summary & Future Plans

Acqiris Digitizer for Target Counters

- High-Speed 10-bit PXI/CompactPCI
- \circ 1 ch=8 G/s, 2 ch=4 G/s, 4 ch=2 G/s
- Acquisition memory: 256-1024 kp
- Complete pre- and post-triggering
- Low 350 ns dead time
- \circ 400 MB/s PCI bus transfers data
- o High-res. TTI for accurate timing

Device driver for Windows XP

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

PEN: Statistical Uncertainties

Relative statistical uncertainty for $N_{e2} = (1 + \epsilon)N_p$ HT events:

$$\frac{\Delta N_{\text{e2}}}{N_{\text{e2}}} = \left[\frac{1}{N_{p}} + \frac{(\Delta \epsilon)^{2}}{(1+\epsilon)^{2}}\right]^{1/2}$$

٠

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

PEN: Statistical Uncertainties

Relative statistical uncertainty for $N_{e2} = (1 + \epsilon)N_p$ HT events:

$$\frac{\Delta N_{e2}}{N_{e2}} = \left[\frac{1}{N_p} + \frac{(\Delta \epsilon)^2}{(1+\epsilon)^2}\right]^{1/2}$$

For LT prescaling factor f we find:

$$\frac{\Delta N_{\rm e2}}{N_{\rm e2}} \left[\frac{f + \epsilon + \epsilon^2}{f N_{\rm p}} \right]^{1/2}$$

.

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Conservative choice of $E_{\rm HT} = 46 \,\text{MeV} \rightarrow \text{tail fraction } \epsilon = 0.02$.

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

PEN: Statistical Uncertainties

Relative statistical uncertainty for $N_{e2} = (1 + \epsilon)N_p$ HT events:

$$\frac{\Delta N_{e2}}{N_{e2}} = \left[\frac{1}{N_p} + \frac{(\Delta \epsilon)^2}{(1+\epsilon)^2}\right]^{1/2}$$

For LT prescaling factor *f* we find:

$$\frac{\Delta N_{e2}}{N_{e2}} \left[\frac{f + \epsilon + \epsilon^2}{f N_p} \right]^{1/2}$$

Conservative choice of $E_{\rm HT} = 46 \,\text{MeV} \rightarrow \text{tail fraction } \epsilon = 0.02$. Setting $\Delta N_{e2}/N_{e2} = 2 \times 10^{-4}$, $r_{\pi \text{stop}} = 20,000/\text{sec}$, f = 1/16:

 $N_{
m p}=3.4 imes10^7$ and $r_{
m trig}\sim75$ (6 months net beam time).

▲日本 4個本 4 目本 4 目本 4 目本 4 目本

Outline	Physics Motivation	Experimental Apparatus
	00	00
	000	00
	00	0

Summary & Future Plans

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

PEN: Systematics Uncertainties

 π/μ decay discrimination: low μ decay pileup, digitized target waveforms

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	00	0	000

◆□▶ ◆圖▶ ★ヨ▶ ★ヨ▶ - ヨー のへぐ

- π/μ decay discrimination: low μ decay pileup, digitized target waveforms
- π/µ decay normalization: Michel energy spectrum, absolute energy calibration (≤ 1 × 10⁻⁴)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	00	0	000

- π/μ decay discrimination: low μ decay pileup, digitized target waveforms
- ► π/µ decay normalization: Michel energy spectrum, absolute energy calibration (≤ 1 × 10⁻⁴)
- ► Acceptance ratio for π_{e2} and Michel decays: RMD \rightarrow PIBETA data & analysis ($\leq 1 \times 10^{-4}$)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	00	0	000

- π/μ decay discrimination: low μ decay pileup, digitized target waveforms
- ► π/μ decay normalization: Michel energy spectrum, absolute energy calibration (≤ 1 × 10⁻⁴)
- ► Acceptance ratio for π_{e2} and Michel decays: RMD \rightarrow PIBETA data & analysis ($\leq 1 \times 10^{-4}$)
- ► Hadronic background in the detector: GEANT4 studies (≤ 1 × 10⁻⁴)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	00	0	000

- π/μ decay discrimination: low μ decay pileup, digitized target waveforms
- ► π/µ decay normalization: Michel energy spectrum, absolute energy calibration (≤ 1 × 10⁻⁴)
- ► Acceptance ratio for π_{e2} and Michel decays: RMD \rightarrow PIBETA data & analysis ($\leq 1 \times 10^{-4}$)
- ► Hadronic background in the detector: GEANT4 studies (≤ 1 × 10⁻⁴)
- ► Time-zero definition and $f_{\pi d}/f_{sd}$ ratio ($\leq 2 \times 10^{-4} \rightarrow \Delta t_0 = 5 \text{ ps}$)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis
	00	00	0000
	000	00	00
	00	0	000

- π/μ decay discrimination: low μ decay pileup, digitized target waveforms
- ► π/µ decay normalization: Michel energy spectrum, absolute energy calibration (≤ 1 × 10⁻⁴)
- ► Acceptance ratio for π_{e2} and Michel decays: RMD \rightarrow PIBETA data & analysis ($\leq 1 \times 10^{-4}$)
- ► Hadronic background in the detector: GEANT4 studies (≤ 1 × 10⁻⁴)
- ► Time-zero definition and $f_{\pi d}/f_{sd}$ ratio (≤ 2 × 10⁻⁴ → $\Delta t_0 = 5$ ps)
- Total systematic uncertainty: $\leq 2 3 \times 10^{-4}$)

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	0000000			0

 $\pi \rightarrow e\nu$ Branching Ratio and $\pi \rightarrow e\nu$ Tail Fraction

Illustration from 2008 data: BR will be determined from HT data, tail fraction deduced from prescaled LT runs.

Raw histograms show total target energy vs total CsI calorimeter energy (left: HT, right: LT).

イロト イポト イヨト イヨト

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Timing Spectra

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plar
	00	00	0000	0
	000	00	•0	
	00	0	000	

Target Waveforms: $\pi \rightarrow e\nu$ **Events**

~ ~ ~ ~ ~ ~

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plan
	00	00	0000	0
	000	00	0.	
	00	0	000	

Target Waveforms: Michel Events

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Outline	Physics Motivation	Experimental Apparatus
	00	00
	000	00
	00	0

Artificial Neural Network: Inputs and Output

Multi Layer Percepton definition - linear ANN

- Multi Layer Percepton definition linear ANN
- Network Structure: ten input neurons, two hidden layers (10 + 10) and one output

イロト (得) (日) (日) (日) (日)

- Multi Layer Percepton definition linear ANN
- Network Structure: ten input neurons, two hidden layers (10 + 10) and one output

イロト (得) (日) (日) (日) (日)

 Inputs: eight charge integrals, number of peaks (TSpectrum), π⁺-Stop Timing

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

- Multi Layer Percepton definition linear ANN
- Network Structure: ten input neurons, two hidden layers (10 + 10) and one output

 Inputs: eight charge integrals, number of peaks (TSpectrum), π⁺-Stop Timing

• Output:
$$\mathbf{1} = \pi^+ \to \mathbf{e}^+ \nu$$
, $\mathbf{0} = \pi^+ \to \mu^+ \to \mathbf{e}^+$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans O
---------	--------------------	------------------------	-----------------	-----------------------------

- Multi Layer Percepton definition linear ANN
- Network Structure: ten input neurons, two hidden layers (10 + 10) and one output
- Inputs: eight charge integrals, number of peaks (TSpectrum), π⁺-Stop Timing
- Output: $\mathbf{1} = \pi^+ \to \mathbf{e}^+ \nu$, $\mathbf{0} = \pi^+ \to \mu^+ \to \mathbf{e}^+$

```
double p2e_mpl::value(int index,double in0,double in1, double
in2,double in3,double in4,double in5) {
    input0 = (in0 - 18.365)/2.02788; ...
    input5 = (in5 - 2.34097)/0.474034;
    return ((neuron0xa212580()*1)+0); }
    double p2e_mpl::neuron0xa212580() {
    double input = 0.0816982;
    input += synapse0xa212648(); ...
    return input } ...
```

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

$\pi \to e \nu$ Discrimination with ANN: Monte Carlo

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三里 - のへの

• ANN training on High Thr. MC data: E_e >48 MeV, $t_{\pi G}$ >10 ns
Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi \rightarrow e \nu$ Discrimination with ANN: Monte Carlo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ANN training on High Thr. MC data: E_e >48 MeV, $t_{\pi G}$ >10 ns
- Application on Low Thr. MC data, E_e >10 MeV, $t_{\pi G}$ >10 ns

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi \rightarrow e \nu$ Discrimination with ANN: Monte Carlo

- ANN training on High Thr. MC data: E_e >48 MeV, $t_{\pi G}$ >10 ns
- Application on Low Thr. MC data, E_e >10 MeV, $t_{\pi G}$ >10 ns
- \bullet Extract efficiency and false positive probability for $\pi^+ \to e^+ \nu$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

 $\pi \rightarrow e \nu$ Discrimination with ANN: Monte Carlo

- ANN training on High Thr. MC data: E_e >48 MeV, $t_{\pi G}$ >10 ns
- Application on Low Thr. MC data, $E_e > 10 \text{ MeV}$, $t_{\pi G} > 10 \text{ ns}$
- Extract efficiency and false positive probability for $\pi^+
 ightarrow {f e}^+
 u$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	0
	000	00	00	
	00	0	000	

Discrimination with Neural Networks: MC Simulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	•
	000	00	00	
	00	0	000	

◆□▶ <畳▶ < 差▶ < 差▶ 差 のQの</p>

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	•
	000	00	00	
	00	0	000	

• Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00 000 00	00 00 0	0000	•

• Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.

 Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).

• Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.

イロト (得) (日) (日) (日) (日)

- Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.

- Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.
- Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.
- In 2008 run used position-sensitive four-wedge active degrader, considering replaced it with mini-time-projection chamber (mTPC) for 2009 data production run.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	•
	000	00	00	
	00	0	000	

- Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.
- Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.
- In 2008 run used position-sensitive four-wedge active degrader, considering replaced it with mini-time-projection chamber (mTPC) for 2009 data production run.
- ► Total pions stopped in 2007 and 2008 runs: $> 8 \times 10^{10}$. To date $> 4.7 \times 10^6 \pi \rightarrow e\nu$ decays recorded, corresponding to $(\delta B/B)_{\text{stat}} < 5 \times 10^{-4}$

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	•
	000	00	00	
	00	0	000	

- Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.
- Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.
- In 2008 run used position-sensitive four-wedge active degrader, considering replaced it with mini-time-projection chamber (mTPC) for 2009 data production run.
- ► Total pions stopped in 2007 and 2008 runs: $> 8 \times 10^{10}$. To date $> 4.7 \times 10^6 \pi \rightarrow e\nu$ decays recorded, corresponding to $(\delta B/B)_{\text{stat}} < 5 \times 10^{-4}$
- Detailed data analysis under way in preparation for a 2009 run, planned to complete the required event statistics.

Outline	Physics Motivation	Experimental Apparatus	Data & Analysis	Summary & Future Plans
	00	00	0000	•
	000	00	00	
	00	0	000	

- Developed clean π^+ beam tunes with up to 30,000 stopped π^+ /sec at 85 MeV/c momentum.
- Digitized signals of beam detectors: forward (B0) beam counter, active degrader (AD), and active target (AT).
- Two development runs, in 2007 and 2008, ramping up beam stop and DAQ rates to design specifications.
- In 2008 run used position-sensitive four-wedge active degrader, considering replaced it with mini-time-projection chamber (mTPC) for 2009 data production run.
- ► Total pions stopped in 2007 and 2008 runs: $> 8 \times 10^{10}$. To date $> 4.7 \times 10^6 \pi \rightarrow e\nu$ decays recorded, corresponding to $(\delta B/B)_{\text{stat}} < 5 \times 10^{-4}$
- Detailed data analysis under way in preparation for a 2009 run, planned to complete the required event statistics.
- PEN Web page: http://pen.phys.virginia.edu