### Galileo and Einstein

Link to Course

The course follows the development of ideas approximately in the
historical sequence. After looking over the first recorded real mathematics,
that of the Babylonians, we review some of the Greek contributions
to math and science, which were essential to both Galileo and Einstein in their
work. We shall prove—and find very useful—Pythagoras’ theorem, and a few other ideas
about triangles. We'll also look at Greek ideas about the Solar System, and
how they measured the distance to the Moon quite accurately (using the ideas
about triangles!). We will examine how these ideas reached western Europe by way of the Arab world.

We'll do some of Galileo’s actual experiments that led to understanding motions
of projectiles, and show how Newton connected these results with the motion of the Moon,
and then to all the planets.
Next, we'll examine the nature of light, for this is what
led Einstein to question the traditional concepts of space and time.
Finally, we'll develop the theory of Special Relativity, including time dilation,
relativistic mass increase, and *E* = *mc*^{2}.

### Modern Physics

Link to Course

“Modern” physics means physics based on the two major breakthroughs of the early the twentieth century: relativity and quantum mechanics.
Physics based on what was known before then (Newton’s laws, Maxwell’s equations, thermodynamics) is called “classical” physics.
This course traces in some detail just how the new ideas developed. We examine the experimental and theoretical paradoxes that forced thinking out of the traditional path. This is a valuable exercise—the classical ideas are in much better accord with common sense (defined by Einstein as the layer of prejudices in place by age eighteen), so seeing how the new physics came about is helpful in overcoming that “common sense” and getting a better understanding of nature.
But this is not just a course on concepts: the lectures and homework are sufficient to give the student a basic technical grasp of special relativity, and of Schrödinger’s quantum mechanics.

### Graduate Classical Mechanics

A new set of notes, based on Landau's book.

Link to Course

### Graduate Electricity and Magnetism

A new set of notes, based loosely on Jackson, and still under construction: approximately half done.

Link to Course

### Physics 152: Gravity, Fluids, Waves, Heat

Link to Course

This grab bag of physics topics formed the second semester of our four-semester introductory physics course designed for physics majors. I've also added material which isn't in the standard textbooks, especially on fluids, to give a more complete picture.